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Abstract / Resumé / Ðåçþìå

In this thesis we propose state-dependent importance sampling heuristics to estimate
the probability of population overflow in queuing networks. These heuristics capture
state-dependence along the boundaries (when one or more queues are almost empty)
which is crucial for the asymptotic efficiency of the change of measure. The approach
does not require difficult (and often intractable) mathematical analysis or costly
optimization involved in adaptive importance sampling methodologies. Experimental
results on tandem, parallel, feed-forward, and a 2-node feedback Jackson queuing
networks as well as a 2-node tandem non-Markovian network suggest that the pro-
posed heuristics yield asymptotically efficient estimators, sometimes with bounded
relative error. For these queuing networks no state-independent importance sampling
techniques are known to be efficient.

In dit proefschrift introduceren we toestandsafhankelijke importance sampling
heuristieken om de waarschijnlijkheid van overflow van de totale populatie in
netwerken van wachtrijsystemen te schatten. Deze heuristieken hebben de juiste
toestandsafhankelijkheid langs de grenzen (als een of meer wachtrijen bijna leeg
zijn). Dit is cruciaal voor de asymptotische efficiëntie van de kansmaatverandering.
De aanpak vereist geen moeilijke (en vaak ingewikkelde) wiskundige analyse of
kostbare optimalisatie zoals in adaptieve importance sampling methodieken. Expe-
rimentele resultaten voor tandem, parallel, feed-forward en 2-node feedback Jackson
wachtrijnetwerken alsook voor een 2-node tandem non-Markov netwerk suggereren
dat de voorgestelde heuristieken asymptotisch efficiënte schatters opleveren, soms
met begrensde relatieve fout. Voor deze wachtrijnetwerken zijn geen efficiënte
toestandsonafhankelijke importance sampling technieken bekend.

Â äàííîé ðàáîòå ïðåäëàãàþòñÿ ýâðèñòè÷åñêèå ìåòîäû ïîëó÷åíèÿ îöåíêè âåðî-
ÿòíîñòè ïåðåïîëíåíèÿ ñåòè ñ ïîìîùüþ çàâèñèìîé îò ñîñòîÿíèÿ ñåòè âûáîðêè ïî
âàæíîñòè. Ìåòîäû îòðàæàþò çàâèñèìîñòü âäîëü ãðàíèö ïðîñòðàíñòâà ñîñòîÿíèé
ñåòè (â ñëó÷àå, êîãäà îäíà èëè áîëåå î÷åðåäè ïî÷òè ïóñòû), èìåþùóþ ðåøàþùåå
çíà÷åíèå äëÿ àñèìïòîòè÷åñêîé ýôôåêòèâíîñòè çàìåíû ìåðû. Ïîäõîä íå òðåáóåò
ñëîæíîãî (è ÷àñòî íåðàçðåøèìîãî) ìàòåìàòè÷åñêîãî àíàëèçà è îïòèìèçàöèîííûõ
çàòðàò, ó÷àñòâóþùèõ â àäàïòàòèâíûõ ìåòîäèêàõ íàõîæäåíèÿ âûáîðêè ïî âàæ-
íîñòè. Ðåçóëüòàòû ýêñïåðèìåíòîâ íà òàíäåìíûõ, ïàðàëëåëüíûõ, ñåòÿõ ñ ïðÿìîé
ñâÿçüþ, è 2-õ óçåëíûõ Äæåêñîí ñåòÿõ ñ îáðàòíîé ñâÿçüþ, à òàêæå 2-õ óçåëíûõ
òàíäåìíûõ íå-Äæåêñîí ñåòÿõ, ïîäòâåðæäàþò, ÷òî ïðåäëàãàåìûé ýâðèñòè÷åñêèé
ïîäõîä äàåò àñèìïòîòè÷åñêè ýôôåêòèâíûå îöåíêè, â íåêîòîðûõ ñëó÷àÿõ äàæå



vi

ñ îãðàíè÷åííîé îòíîñèòåëüíîé ïîãðåøíîñòüþ. Äëÿ òàêîãî ðîäà ñåòåé ñóùåñòâî-
âàíèå ýôôåêòèâíûõ íåçàâèñèìûõ îò ñîñòîÿíèÿ ñåòè âûáîðîê ïî âàæíîñòè äî
íàñòîÿùåãî ìîìåíòà áûëî íåèçâåñòíî.



Contents

1 Introduction 1
1.1 Motivation of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Importance Sampling 5
2.1 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Techniques for rare event simulation . . . . . . . . . . . . . . . . . . . 6
2.3 Basics of Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 The optimal change of measure . . . . . . . . . . . . . . . . . . 8
2.3.3 Asymptotic efficiency . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 State dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Analytical and heuristic IS techniques . . . . . . . . . . . . . . . . . . 10
2.4.1 Large deviation theory . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 State-independent heuristics . . . . . . . . . . . . . . . . . . . . 12
2.4.3 State-dependent heuristics . . . . . . . . . . . . . . . . . . . . . 13

2.5 Adaptive IS techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Basics of cross-entropy method . . . . . . . . . . . . . . . . . . 14
2.5.2 Algorithmic description . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 State-dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 State-dependent heuristics for tandem networks 19
3.1 Model and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Two-node tandem networks . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Motivation of the heuristic . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Time reversal argument . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 State-dependent heuristic (SDH) . . . . . . . . . . . . . . . . . 23
3.2.4 Improved heuristic (SDHI) . . . . . . . . . . . . . . . . . . . . 25

3.3 Multiple-node tandem networks . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 State-dependent heuristic (SDH) . . . . . . . . . . . . . . . . . 27
3.3.2 Improved heuristic (SDHI) . . . . . . . . . . . . . . . . . . . . 28

3.4 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Methods used for performance comparison . . . . . . . . . . . . 32

3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



viii CONTENTS

3.5.1 Performance for 2 queues in tandem . . . . . . . . . . . . . . . 33
3.5.2 Performance for 3 and 4 queues in tandem . . . . . . . . . . . . 39

3.6 Extensive experimental results . . . . . . . . . . . . . . . . . . . . . . 46
3.6.1 Validation for 2 queues in tandem . . . . . . . . . . . . . . . . 46
3.6.2 Validation of SDHI for 3 and 4 queues in tandem . . . . . . . . 62

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 State-dependent heuristic for queues in parallel 71
4.1 Model and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Preliminary discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Motivation of the heuristic . . . . . . . . . . . . . . . . . . . . 72
4.2.2 Time reversal argument . . . . . . . . . . . . . . . . . . . . . . 72

4.3 State-dependent heuristic . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Sensitivity with respect to b . . . . . . . . . . . . . . . . . . . . 79
4.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 State-dependent heuristics for Jackson networks 89
5.1 Model and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Buffer overflow at an arbitrary node . . . . . . . . . . . . . . . . . . . 90
5.3 State-dependent heuristics . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 SDH for a feed-forward network . . . . . . . . . . . . . . . . . . 92
5.3.2 SDH for a feedback network . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Possible generalization . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Performance for a feed-forward network . . . . . . . . . . . . . 98
5.4.2 Performance for a feedback network . . . . . . . . . . . . . . . 101

5.5 Extensive experimental results . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Sensitivity with respect to bi . . . . . . . . . . . . . . . . . . . 104
5.5.2 Behavior of relative error . . . . . . . . . . . . . . . . . . . . . 108
5.5.3 Dependence of bopt on the overflow level . . . . . . . . . . . . . 108
5.5.4 Guideline for finding bopt . . . . . . . . . . . . . . . . . . . . . 112

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Exploring further 113
6.1 A proof of asymptotic efficiency? . . . . . . . . . . . . . . . . . . . . . 113

6.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 First approach for a proof . . . . . . . . . . . . . . . . . . . . . 114
6.1.3 Second approach for a proof . . . . . . . . . . . . . . . . . . . . 115
6.1.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Non-Markovian networks . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.1 Non-Markovian models . . . . . . . . . . . . . . . . . . . . . . 123
6.2.2 Optimal change of measure for GI/GI/1 queue . . . . . . . . . 124
6.2.3 Simulating non-Markovian networks . . . . . . . . . . . . . . . 125
6.2.4 Extension for tandem networks. General case . . . . . . . . . 126



CONTENTS ix

6.2.5 Exact calculation of COM for Model 1:
M/Bim/1 → ·/Bim/1 . . . . . . . . . . . . . . . . . . . . . . . 128

6.2.6 Exact calculation of COM for Model 2:
H2/Bim/1 → ·/Bim/1 . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.7 Experimental results for Model 1 . . . . . . . . . . . . . . . . . 131
6.2.8 Experimental results for Model 2 . . . . . . . . . . . . . . . . . 137
6.2.9 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7 Conclusions 143
7.1 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A Fully state-dependent heuristic for tandem networks 145

B Proof of Observation 4 (Section 6.1.3) 151

Acknowledgments 159

Curriculum Vitae 161

Bibliography 163

Index 169



x CONTENTS



Chapter 1

Introduction

In this thesis we study the problem of estimating the probability of population overflow
in queuing networks. This introductory chapter provides the motivation of this work
and an outline of the thesis.

1.1 Motivation of the work

Rare event probabilities have been an interesting topic of research for many years.
Despite their rareness, these probabilities have a huge, and, sometimes, very crucial
importance, like, for example, in predicting the crash of a space craft or an atomic
factory explosion. They play a very important role in forecasting, e.g., in estimating
the probabilities of hurricanes and earth quakes.

For telecommunication networks these probabilities are not life-critical, but still
are much of the interest. Nowadays, with increased networks capabilities and huge
progress in the network applications, a lot of data is transfered via the Internet: text
files for e-mails, books, program files (eg., updates for web-browsers, e-mail programs),
multi-media data, etc. It is very important that all the information reaches the
addressee. Some high-level protocols (like TCP) take care, via retransmissions, that
all the sent data is delivered. However, it is still important to prevent data loss as
much as possible to decrease unnecessary retransmissions. For that, first, the network
capacity needs to be large enough to support the traffic. Second, no, or a very small
amount of packets may be lost during the transmission. With the recent advances in
optical networking the first requirement is not a problem anymore. The second one
is up to the designer to develop. While going from one end system to another, the
traffic needs to pass several routers on its way. Since every link has a limited capacity,
packets that find it busy, are stored in buffers of intermediate routers. When a newly
arriving packet finds the buffer full, it has to be dropped. For a small buffer size and
high network traffic this probability can become unacceptably large, thus, the system
needs to be designed in such a way that the dropping, or, overflow is a rare event.

Two kinds of probabilities are usually studied, an overflow of an individual buffer
and the total network population overflow. The exact calculation of these probabilities
is only available for simple networks of small size. For more realistic and, thus,
complicated systems, typically simulation is being used to obtain insight in these
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probabilities. Some special techniques are involved to speed up the simulation, since
the events of interest are rare, and, thus, a long simulation run would be needed
to estimate them with a high confidence. The most popular technique involved is
Importance Sampling (IS) (e.g., [1], [2], [3], [4]). With IS, the simulation is done
under a new distribution, called a change of measure, and the final estimator is
weighted by the corresponding factors to compensate for this change. There are,
however, no general guidelines on how to choose the new distribution functions under
which the system is simulated. Theoretically, there exists the best IS distribution,
which gives a zero-variance estimator. However, it is unpractical, since it depends on
the probability to be estimated. Thus, other ways have to be employed to find IS
distribution functions.

A change of measure to be used in IS can be either, state-dependent, i.e., different
for each network state, or, state-independent, i.e., the same for each state. There
are several approaches to find a change of measure to be used in IS. Some theoretical
results exist but they are only available for small queuing networks of a specific
type (e.g., [5], [6], [7]). For complicated systems either adaptive techniques (e.g., [8],
[9], [10], [11], [12], [13], [14]), or, heuristic guesses (e.g., [15], [16], [17], etc.) are
used. The advantage of adaptive algorithms is their general applicability. The
disadvantage is their convergence, which can not be guaranteed. The problem with
heuristic approaches is that there is no general rule which works for all types of
networks and all possible network parameters.

Some asymptotically efficient results based on a heuristic approach have been
obtained to estimate the overflow probability of individual buffers (e.g., [18], [19],
[20], [21], [22]), but no such results are known to exist for the estimation of the total
population overflow probability. The first work was done in [15] and was continued in
[16], [17], [23], but proven later in [24] and [25] to be useful only for restricted network
parameter settings. Thus, up to now, there have been no heuristics to estimate the
total network overflow probability that can be applied to any type of network for all
possible network parameters.

In this thesis, heuristics to estimate the total network overflow probability for
different types of networks are developed. The networks that are considered include
Jackson networks of nodes in tandem, in parallel, feed-forward networks and networks
with feedback, as well as a 2-node non-Markovian tandem queuing network.

1.2 Outline of the thesis

Chapter 2 provides necessary background information on existing techniques to
simulate rare-event probabilities. The Importance Sampling technique, which is used
in this thesis, is considered in more detail. We discuss a well-known heuristic to
estimate total population overflow, as well as its applicability to different network
parameters and topologies. We also talk about an adaptive method which we use later
for comparison with the performance of the new heuristics developed in Chapters 3–5.

In Chapter 3 we describe two heuristics for simulating rare events in tandem
queuing networks. We give some motivation behind the approach based on a time-
reversal argument. In the experimental section we compare the performance of our
heuristics with the adaptive algorithm (described in Chapter 2) and show that they
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perform similar or better. We also validate the heuristics by extensive experimentation
for networks of up to four nodes.

In Chapter 4 we develop a heuristic for simulating rare events in queuing networks
of nodes in parallel. The heuristic, theoretically, can be applied for any number of
nodes. A large variety of experiments is done for networks of up to four nodes. The
heuristic is validated and also shows good performance. The performance is, again,
compared with the adaptive algorithm.

In Chapter 5 the heuristics are developed for other Jackson network topologies,
namely, feed-forward and feedback. Again, feed-forward network topologies of up
to four nodes are considered and a heuristic for multiple-node network of a specific
topology is developed. The comparison with the performance of the adaptive algo-
rithm is presented and extensive experimental results are performed to demonstrate
the validity of the heuristic. A heuristic for a small network with feedback is also
developed. Several experimental results are given to compare the performance of the
new heuristic with the adaptive algorithm.

Chapter 6 describes further research ideas, in two parts. In the first part we
discuss several approaches to analytically prove asymptotic efficiency of the heuristics
developed in Chapter 3. In the second part we discuss how the heuristic methods
developed in Chapter 3 can be generalized to non-Markovian networks. We give a
couple of examples which show very good performance.

We conclude in Chapter 7 and discuss some possibilities for future work.
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Chapter 2

Importance Sampling

This chapter aims to provide background information on rare event simulation tech-
niques and especially emphasizes the Importance Sampling (IS) method. It also dis-
cusses the applicability of some well known IS heuristics as well as adaptive algorithms
for calculating rare event probabilities in queuing networks. The chapter is organized
as follows: in Section 2.1 we discuss why ordinary Monte Carlo simulation is not
applicable for estimating rare event probabilities; in Section 2.2 we present two tech-
niques for rare event simulation; Section 2.3 describes the IS method in more detail;
Section 2.4 discusses a well known IS heuristic which is applicable only for restricted
types of networks and only for some network parameters, thus, showing a need for
a new approach; Section 2.5 represents some adaptive algorithms and discusses their
limitations.

2.1 Monte Carlo simulation

Consider an open queuing network of d nodes. Let X = (Xt, t ≥ 0) be a stochastic
process with the state space S, describing the network state at time t, i.e., Xt =
(xt,1, ...xt,d), where xt,i is the number of customers at node i at time t. We assume
that Xt is a Markov process. Let A be a rare event set (A ⊂ S); suppose we are
interested in estimating probability γ = Pr(A), i.e., the probability that the rare
event A occurs.

For example, if we want to estimate the probability that in a queuing system a
queue reaches its maximum size before it gets empty (which is a rare event for a large
buffer size) then γ could be expressed as Pr{TA < T0}, where TA is the first time the
process enters the rare event set A (the queue reaches its maximum size) and T0 is
the first time the queue gets empty.

The Monte Carlo (MC) simulation method for estimating γ means collecting,
say, n samples (X̃(1), ..., X̃(n)) of Xt, where X̃(i) represents the state of the system
at the end of the i-th simulation run, i.e., X̃(i) is a state (x(i)

Ti,1
, ...x

(i)
Ti,d

), where Ti is
the time of the i-th simulation run, and calculating the fraction of those samples that
ended in A. Formally, let I{.} be an indicator function and Ii = I{X̃(i)∈A}, i.e., Ii is
equal to one if the rare event was observed during the simulation and is equal to zero,
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otherwise, then, the estimate γ̃ for γ is equal to

γ̃ =
∑n

i=1 Ii

n
. (2.1)

Note that γ̃ is an unbiased estimate of γ, i.e., Eγ̃ = γ. The variance of the estimator γ
is given by

V ar(γ̃) =
γ(1− γ)

n
, (2.2)

and the relative error, defined as the ratio of the standard deviation of the estimator
over its expectation, is equal to

RE (γ̃) =

√
V ar(γ̃)

γ
=

√
1− γ

nγ
≈ 1√

nγ
. (2.3)

Thus, for a fixed number of samples n the relative error RE →∞ as γ → 0. In other
words, for a fixed RE = r we need at least n = r−2(1− γ)/γ ≈ r−2/γ samples, which
means that n →∞ as γ → 0. This fact makes the standard MC method inapplicable
for estimating rare event probabilities.

2.2 Techniques for rare event simulation

To overcome the problems with estimating rare events, two main techniques have
been developed: the splitting method and the Importance Sampling method. The
main idea of both techniques is (in different ways) to make the rare event happen
more often, and, hence, the MC method efficient again.

The splitting method, mostly known as RESTART (the REpetitive Simu-
lation Trials After Reaching Thresholds) creates many hits of the rare event by
repeating (splitting) the most promising paths, a path is a sequence of states visited
during simulation) i.e., paths that have more chance to reach the rare event. The idea
of splitting is based on the assumption that there exist some intermediate states that
are visited much more often than the target (rare event) states. Those states behave
as “gateways” to reach the target states. If, for example, the target states represent
the full queue in a queuing system then states corresponding to the case when the
queue is, say, half full can be regarded as intermediate states.

The splitting method starts by dividing the system state space into several inter-
mediate subsets (or levels) called restart levels. Each time a path reaches the next
restart level it is split into several trajectories. When one of the trajectories hits the
next restart level the splitting repeats. The rare event probability is then calculated as
a combination of many non-rare event probabilities that can be estimated by the MC
method. Calculating the variance of the estimator is, however, not always straight-
forward and depends on the details of the splitting method. For example, when the
path reaches the next restart level one could either split only this path and do not
consider all other paths that were split on the previous level, or one could consider
all paths that reached the next level from the previous one and split all of them; for
more details see [27].

The efficiency of the splitting method depends on the proper choice of restart levels
(how many of them to use and how to choose them) and the number of splits per level.
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This choice is relatively simple for small models, but becomes more complicated and
crucial for multi-node network models, where choosing the wrong parameters could
lead to inefficient simulation.

In this thesis the splitting method will not be considered further; the interested
reader can find more details in [27], [28], [29], [30], [31] and references therein.

Another way to increase the frequency of a rare event is to use the Importance
Sampling (IS) method (e.g., [1], [2], [3], [4]). The idea of IS is to modify (bias)
the underlying probability distribution such that the rare events occur much more
frequently, i.e., important events are sampled more often, hence the name. To correct
for this modification, the results are weighted in a way that yields a statistically
unbiased estimator. The main problem of IS is to determine which parameter(s) of
the system to bias (the technique), and how much to bias each of them. When the
new parameters are defined correctly, the IS method allows to speed up the simulation
considerably and to obtain a significant increase in estimator precision.

2.3 Basics of Importance Sampling

In this thesis we use the IS method, therefore below we discuss it in more detail. In
Section 2.3.1 we introduce the notation, in Section 2.3.2 we describe the best change
of measure that can be achieved, in Sections 2.3.3 and 2.3.4 we talk, respectively,
about asymptotic efficiency and state-dependency properties.

2.3.1 Notation

IS involves simulating the model under a different underlying probability distribution
so as to increase the frequency of typical sample paths leading to the rare event.
Formally, let X = (Xt, t ≥ 0) be a stochastic process and γ(ε) be a sequence of rare
event probabilities indexed by a rarity parameter ε (ε > 0) so that γ(ε) → 0 as ε → 0.
For example, in a buffer sizing problem, we could let ε = 1/b and γ(ε) = Pr(q > b)
where b is a buffer size and q is the random variable describing the steady-state queue
length distribution.

Denote by f and f̃ the original and new probability measures, respectively. Let
A be a rare event set, I{.} be an indicator function and ω be a sample path over the
interval [0, t]. Then the rare event probability of interest can be expressed as follows

γ = Pr(A) = E I{A} = E I{A}
f(ω)
f̃(ω)

f̃(ω) = ẼLt(ω) I{A} , (2.4)

where Ẽ is the expectation under the new measure f̃ and Lt(ω) is the likelihood ratio
associated with path ω, i.e.,

Lt(ω) =
f(ω)
f̃(ω)

. (2.5)

Thus, γ can be estimated by simulating a random variable with a new probability
density function f̃ and then unbiasing the output by multiplying it with the likelihood
ratio. Sampling with a different density is called a change of measure and the density
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f̃ is called the Importance Sampling (IS) density. The only condition on f̃ required
to obtain an unbiased estimator is that

f̃(ω) > 0, ∀ω ∈ A such that f(ω) > 0. (2.6)

Denote by γ̃ the estimator of γ under the new measure f̃ , i.e.,

γ̃ = ẼLt(ω) I{A}. (2.7)

Since Eγ̃ = γ (which also means that γ̃ is an unbiased estimator of γ) the variance of
γ̃ is given by

V ar(γ̃) = ẼLt
2(ω) I{A} − γ2 (2.8)

and a variance reduction is obtained if f̃ is chosen such that

ẼLt
2(ω) I{A} < E I{A} . (2.9)

2.3.2 The optimal change of measure

Essentially any change of measure f̃ satisfying the condition (2.6) can be used. Then
the natural question arises, what is the optimal change of measure, i.e., what is the
density that minimizes the variance of γ̃?

Since V ar(γ̃) ≥ 0, the minimum is achieved when f̃ is chosen such that V ar(γ̃) =
0. To show that this is possible, consider f̃ = f∗ where

f∗(x) =
f(x)I{A}

γ
. (2.10)

Then Lt(ω)I{A} = γ with probability one and V ar(γ̃) = 0, since the variance of
a constant is equal to zero. Thus, f∗ is the optimal change of measure, which is
simply the original distribution conditioned on the occurrence of the rare event of
interest. However, this knowledge can not be used in practice, since it requires a
priori knowledge of γ, the probability we are trying to estimate.

How, then, can one find a good IS change of measure, i.e., a change of measure
that reduces the variance of the estimator γ̃ and that satisfies Equation (2.9)? Since
Eγ̃ = γ for any density f̃ that satisfies (2.6), reducing the variance is equivalent to
reducing the second moment:

ẼLt
2(ω) I{A} = Ẽ

f(ω)
f̃(ω)

I{A}
f(ω)
f̃(ω)

= E
f(ω)
f̃(ω)

I{A}) = ELt(ω)I{A} , (2.11)

i.e., making the likelihood ratio Lt(ω) = f(ω)/f̃(ω) small on the set A. Note that,
outside A, Equation (2.11) is equal to zero due to the I{A} multiplicand. Since f is
already small on A (a rare event), the problem is to find a new measure f̃ that is
large on A, i.e., the event of interest is likely to occur more often under density f̃ .
Under the (unknown) density f∗ the event of interest occurs with probability one.
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2.3.3 Asymptotic efficiency

To measure the effectiveness of the IS density f̃ , the asymptotic behavior of the
estimator is studied, i.e., how the relative error of the estimator γ(ε), defined as

RE (γ̃(ε)) =

√
V ar(γ̃(ε))

γ(ε)
, (2.12)

changes when the rarity parameter ε → 0. The estimator γ̃(ε) is asymptotically
efficient if its relative error grows at sub-exponential (e.g., polynomial) rate as ε → 0.
Formally, let limε→0 ε log γ(ε) = −θ with θ > 0; that is, θ is the asymptotic decay
rate of γ(ε) as ε → 0. Then, an estimator is said to be asymptotically efficient if

lim
ε→0

ε log ẼLt
2(ω) I{A} = −2θ. (2.13)

The property of asymptotic efficiency is very beneficial since it guarantees that the
number of simulation samples needed to achieve a given relative error grows less than
exponentially fast when the rare event probability is (exponentially) decaying. One
can easily see this by rewriting Equation (2.12) (first, taking the logarithm, then
multiplying by ε and, then, taking the limε→0) in the equivalent form:

lim
ε→0

ε log RE (γ(ε)) = lim
ε→0

ε
1
2

log V ar(γ̃(ε))− lim
ε→0

ε log γ(ε). (2.14)

Taking into account that

V ar(γ̃(ε)) ≤ ẼLt
2(ω) I{A} (2.15)

we obtain
lim
ε→0

ε log RE (γ(ε)) ≤ −1
2
(−2θ) + θ = 0, (2.16)

which means that RE grows less than exponentially fast with γ(ε) decaying exponen-
tially.

Even better than asymptotic efficiency is the bounded relative error property. It
means that the relative error remains bounded as the estimator goes to zero, i.e.,
RE (γ̃(ε)) ≤ C for all γ(ε) as ε → 0. This is the most desirable characteristic that can
be achieved in practice; it implies that one needs only a fixed (bounded) number of
samples n to estimate γ(ε) within a certain relative precision, independent of how small
the probability of interest is. Note that bounded relative error implies asymptotic
efficiency.

2.3.4 State dependency

In general, a change of measure may depend on the system state, even if the original
underlying distributions are state-independent. For example, in a Markovian queu-
ing network, the new arrival and service rates to be used in importance sampling
may depend on the state of the network, i.e., the buffer content at each node. Re-
cent theoretical and empirical studies (e.g., [6], [32], [13]) reveal that state-dependent
changes of measure are generally more effective and can be applied when no effective
state-independent change of measure exists.
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2.4 Analytical and heuristic IS techniques

There exists no general rule for choosing a change of measure f̃ . The main techniques
used in the literature are those based on large deviation theory (discussed in Sec-
tion 2.4.1), or heuristic approaches (Sections 2.4.2–2.4.3), or iterative methods, like
the cross-entropy method (discussed in Section 2.5). They will be considered in more
detail below together with their advantages and disadvantages.

2.4.1 Large deviation theory

As mentioned before, the problem of IS is to find the optimal change of measure.
An analytical way of doing this is based on Large Deviation Theory (LDT) (see,
for example, [33], [34], [2], [35], [36]). Loosely speaking, LDT can be viewed as an
extension of the traditional limit theorems of probability theory. The (Weak) Law
of Large Numbers basically states that certain probabilities converge to zero, while
LDT is concerned with the rate of convergence, as explained below.

Formally, let X1, X2,... be a sequence of i.i.d. random variables with mean µ and
variance σ2 taking values in Rd and Sn = X1 + ... + Xn. Let

M(θ) = Ee〈θ,X1〉, θ ∈ Rd, (2.17)

be the moment generating function associated with Xi. The sequence Sn/n is said to
satisfy a large deviation principle ([36]) if for all closed subsets C ⊂ Rd

lim sup
n→∞

1
n

log Pr(Sn ∈ C) ≤ − inf
x∈C

h(x), (2.18)

and for all open subsets F ⊂ Rd

lim inf
n→∞

1
n

log Pr(Sn ∈ F ) ≥ − inf
x∈F

h(x), (2.19)

where the function h(x), called Cramér or Legendre transform1 (or, the large deviation
rate function), is defined as

h(x) = sup
θ∈Rd

[〈θ, x〉 − log M(θ)]. (2.20)

The inequality (2.18) is usually referred to as the large deviation upper bound and
(2.19) as the large deviation lower bound, and both of them are called as Cramér’s
theorem. This theorem gives the rate of convergence for the Weak Law of Large
Numbers (WLLN). This can be seen from an equivalent statement of (2.18) and
(2.19) for R1. The WLLN states that

lim
n→∞

Pr(Sn/n > y) = 0, for y > µ. (2.21)

For y > µ Cramér’s theorem gives

lim
n→∞

1
n

log Pr(Sn/n > y) = −h(y), (2.22)

1In other literature it is, sometimes, called convex dual or Fenchel-Legendre transform.
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i.e., roughly speaking, it means that Pr(Sn/n ≈ y) ≈ e−nh(y).
Now, how can LDT be applied to speed up simulation? The answer and the

theory behind it can be found in [2]. Since the correct mathematical description of
the theoretical results include a lot of new notation that will not be used later in
this thesis, we present only the general idea. In [2] Markov chains with discrete time,
making “small” jumps over Rd are considered. The set of continuously piecewise
differentiable functions φ: [0,T ]→ Rd called paths is introduced. An action integral
along path φ is defined as

I(φ) =
∫ T

0

hφ(t)(φ′(t))dt. (2.23)

It is shown that for a given set A the probability of interest can be approximated by

Pr(Sn ∈ A) ≈ e−n infφ∈A I(φ). (2.24)

The path φ∗ for which infφ∈A I(φ) is achieved is the most likely path to reach the
set A, i.e., finding the optimal path means minimizing the action integral.

Practically, this means that if A is the target rare set than it is most likely to
be reached by following the path φ∗. Thus, simulating the system under the change
of measure that favors path φ∗ is the quickest way to reach the set A. In [2] it is
shown that the change of measure (to be used in IS) that satisfies this property is the
exponential change of measure (also called exponential twist) defined as

dF ∗(x) =
e〈θ,x〉dF (x)

M(θ)
, with θ ∈ Rd, (2.25)

where F (x) is the original distribution. It was proven in [2] that among all exponential
changes of measure the distribution with θ = θ∗, with θ∗ being the one on which the
supremum (2.20) is achieved, is the optimal change of measure in the sense that it
minimizes Equation (2.11). In other words, the exponential twisting with parameter
θ∗ is the best exponential change of measure to be used in IS.

Below we will present the LDT results for the simple case of the M/M/1 queue.

M/M/1 queue

Consider the example (as in [15]) of a one server queue with exponentially distributed
inter arrival (with mean 1/λ) and service (with mean 1/µ) times. Let fB(x) and
fD(x) be the corresponding probability density functions and MB and MD be the
corresponding moment generating functions.

Suppose we are interested in the probability that the queue exceeds its capacity N
(overflow level) before becoming empty. For a high overflow level this probability is
rare, thus, IS needs to be employed. The change of measure to be used in IS is the
exponential twisting with parameter θ∗ (see discussion above) which follows the most
likely path to reach level N .

This path was found in [15] and a system of equations was derived to find the pa-
rameter θ∗ on which the supremum (2.20) is achieved. As discussed above the change
of measure to be used in IS is the exponential twist (cf. (2.25)) with the parameter θ∗.



12 Ch. 2 Importance Sampling

It was proven in [15] that θ∗ is a solution of equation MB(−θ) ·MD(θ) = 1, i.e.,
(

λ

λ + θ

)(
µ

µ− θ

)
= 1 (2.26)

with θ∗ = µ − λ. Substituting θ∗ in Equation (2.25), taking into account that
MB(−θ∗) = λ/(λ + θ∗) = λ/µ and MD(θ∗) = µ/(µ − θ∗) = µ/λ, gives the new
density functions defined as

f∗B(x) = µe−µx, (2.27)

f∗D(x) = λeλx. (2.28)

Thus, the exponential change of measure with parameter θ∗ for an M/M/1 queue
means that the new arrival and service rates are twisted, i.e., the new arrival rate
is equal to the original service rate and the new service rate is equal to the original
arrival rate.

Difficulties with applying LDT to other (networks of) queues

As we have just seen, LDT can be successfully applied to find the optimal change of
measure in case of an M/M/1 queue. The bad news, however, is that the extension of
this approach to general Jackson queuing networks is not possible (unless some new
results of large deviation theory for Markov processes with discontinuous kernels will
be available [15]). The main problem lies in the fact that for finding the solution of
Equation (2.20) one needs to solve the variational problem with some restrictions on
the transition rate functions (see [15]). Those restrictions are violated for more general
queuing networks. In particular, in queuing network models, transition rates are not
smooth functions of the state space; there is a discontinuity on the boundary when a
server changes from busy to idle. For a single queue there is only one boundary at 0,
but since the overflow probability can be estimated considering the behavior of the
queue during a busy period, this boundary plays no essential role. In contrast, the
boundaries in queuing networks significantly affect the form of the likelihood ratio
associated with a change of measure, and make it much more difficult to identify
effective IS distributions.

2.4.2 State-independent heuristics

To overcome the difficulties with applying LDT to general queuing networks, re-
searchers started to look for heuristic approaches. The breakthrough in this direction
was made in 1989 by Parekh and Walrand ([15]). Based on a heuristic application of
LDT techniques, they proposed state-independent importance sampling estimators
(referred in the sequel as PW heuristic) for overflow probabilities in various Jackson
networks. In particular, they were interested in a probability of total network pop-
ulation overflow; namely, the probability that the total number of customers in the
network reaches some high level N before becoming empty. For queues in parallel their
estimator interchanges the arrival and the service rates of the queue with the largest
traffic intensity. For tandem networks, the PW heuristic interchanges the arrival rate
and the slowest service rate, thus generalizing the M/M/1 estimator described in the
previous section.
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For other types of Jackson networks and networks of GI/GI/1 queues the PW
heuristic was described as a solution of a variational problem, which was solved later
in [17] for Jackson networks and in [37] for tandem networks of GI/GI/1 queues.

However, it was shown in [24] and later investigated in [25] that for two or more
queues in tandem the PW heuristic does not always give an asymptotically efficient
simulation, depending on the values of arrival and service rates. In particular, asymp-
totic efficiency fails when the two service rates are nearly equal. This can be intuitively
explained. In general, a good change of measure assigns large probabilities to the most
likely paths to the rare event ([4]). When service rates are significantly different, the
overflow in the network is most likely to occur because of a buildup in the bottle-
neck queue (see [38] where it was proven asymptotically, i.e., when the population
level N →∞). IS based on interchanging the arrival rate with the bottleneck service
rate mimics this behavior. On the other hand, if the service rates are close, there
are many ways for a large network population to accumulate. In [38] it was proven
that for two node tandem networks with equal service rates asymptotically the hitting
probability is uniformly distributed over the hitting line (the line n1+n2 = N). Thus,
IS based on the interchanging rule is not effective for estimating the probability of a
total network population, though, it is still effective for estimating the single buffer
overflow probability (see [22]). Those two probabilities (total network population
overflow and a single node overflow) are mostly the ones of the researchers’ interest.

In this thesis we are particularly interested in the probability of the total network
population overflow starting from an empty network.

The computation of overflow probabilities of a single node was studied in many
other papers. For example, in [18] the asymptotically optimal state-independent
heuristic based on the theory of effective bandwidths and Markov additive processes
was developed for a single queue and for in-tree networks. The exponential change of
measure was studied in detail in [1].

2.4.3 State-dependent heuristics

The above mentioned heuristics are state-independent, i.e., the change of measure
does not depend on the state of the network; this, of course, keeps the heuristics
simple. On the other hand, by allowing dependence on the system state (typically, the
content of each of the queues), more efficient IS schemes may be obtained. In [6] the
overflow probability of the second queue in a two-node tandem network is estimated
using an exponential change of measure that depends on the content of the first
buffer. The approach is based on a Markov additive process representation of the
system and yields asymptotically efficient simulation when the first buffer is finite;
otherwise, the relative error is bounded only if the second server is the bottleneck. A
state-dependent change of measure is also used in [39] for simulating link overloads in
telecommunication networks; again the functional dependence of the IS rates on the
system state is derived using a heuristic and rather specific mathematical models.

In this thesis we propose very effective state-dependent heuristics for various types
of Jackson networks (Chapters 3–5).
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2.5 Adaptive IS techniques

As an alternative to analytical or heuristic approaches to find a good change of mea-
sure several adaptive techniques have been proposed. The key idea of an adaptive
method is an iterative (adaptive) procedure, which at every step recalculates (adapts)
a change of measure using the results from the previous step, until it converges to the
“optimal” change of measure. One class of adaptive techniques does that by itera-
tively minimizing the variance of the estimator (i.e., doing IS directly, see, e.g., [40],
[41], [42]); another class does that indirectly by minimizing some distance (namely,
the cross-entropy) to the (generally unachievable) zero-variance change of measure
(e.g., [43],[9], [32], [10], [11]).

Since the cross-entropy method will be later used for comparison with the heuris-
tics developed in this thesis we present it in more detail here.

2.5.1 Basics of cross-entropy method

Assume that the change of measure is parametrized by some vector u. Define ω as the
sample path of one replication of the simulation and by I(ω) the indicator function
of the occurrence of the rare event in ω. Denote by f(ω, u) the probability (or, for
continuous systems, probability density) of the sample path ω under u, with u = 0
corresponding to the original system. The likelihood ratio, associated with the sample
path ω and a parameter u is given by

L(ω, u) =
f(ω, 0)
f(ω, u)

, (2.29)

and the expectation under u is denoted by Ẽu.
The Kullback-Leibler cross-entropy between two probability distributions f(x) and

g(x) is defined as follows:

CE =
∫

f(x) ln
f(x)
g(x)

dx (2.30)

Note, that this distance measure is not symmetric; also, if f(x) and g(x) are identical,
CE = 0.

The Kullback-Leibler cross-entropy is applied to measure the distance between
the distribution to be used for simulation and the optimal (ideal) distribution. If
we substitute g(x) = f(x, u) (the distribution to be optimized by changing u) and
f(x) = ρ0h(x)f(x, 0) with ρ0 = (

∫
h(x)f(x, 0)dx)−1 (the “ideal” distribution, i.e., the

original distribution (= f(x, 0)) conditioned on the occurrence of the rare event (see
Section 2.3.2)), then, minimizing CE means finding a vector u∗ such that

u∗ = arg min
u

∫
ρ0h(x)f(x, 0) ln

ρ0h(x)f(x, 0)
f(x, u)

dx

= arg max
u

∫
h(x)f(x, 0) ln f(x, u)dx

= arg max
u
E0h(x) ln f(x, u), (2.31)

which is equivalent to (see Equation (2.4)):

u∗ = arg max
u
Euj h(x)L(x, uj) ln f(x, u), (2.32)
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where uj is a parameter vector yet to be found. Since the expectation can be approx-
imated by the sum over n samples of simulation performed with parameter uj , the
above equation can be rewritten as follows:

uj+1 = arg max
u

n∑

i=1

I(ωi)L(ωi, uj) ln f(ωi, u), (2.33)

where uj+1 is an approximation of u∗. This equation forms the base of the iterative
procedure described below.

Algorithm 1 Adaptive algorithm for finding a change of measure u∗

1: choose the initial parameter u0 (see discussion below)
2: j := 1
3: repeat
4: uj := uj−1

5: simulate n sample paths with parameter uj , yielding ω1, ..., ωn

6: use Equation (2.33) to find the new parameter uj+1

7: j := j+1;
8: until uj has converged, i.e., uj ≈ uj−1

2.5.2 Algorithmic description

To start applying the algorithm, first, some initial parameter u0 at step 1 needs to be
chosen. Theoretically, it could be any value; for example u0 = 0, which corresponds
to the original distribution. However, it is not practical since under the original
distribution the event of interest is rare and, hence, will typically not be observed,
which makes (2.33) unusable. To overcome this, the parameter u0 should be chosen
such that the rare event is, somehow, made less rare. In [43] this is done by introducing
an additional step in the algorithm in which the rare event is temporarily modified
(under the same probability distribution) into a less rare event (for example, the size
of a buffer in a buffer sizing problem is made smaller). Another approach is to use as
the initial vector u0 a heuristic change of measure (like, for example, the PW heuristic
of interchanging the arrival rate with the service rate of the most loaded queue, [10]),
or, as another version of this, use as u0 the results of a (state-independent) adaptive
procedure (see [32]).

Remark 2.5.1. Note that the convergence of the above algorithm has not been
theoretically proven. As a matter of fact, it can happen that it does not converge
at all if the number of replications for simulation is not large enough or the initial
parameter is not good.

The state-dependence property of a change of measure, obtained by the above
algorithm, is hidden in parameter uj . When uj is chosen to be the same for each
system state, we obtain the state-independent version of the algorithm. As discussed
in Section 2.4.2, state-independent changes of measure are not always efficient, thus,
allowing dependence on the state makes the algorithm less restrictive and, hence,
broader applicable.
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2.5.3 State-dependency

Although allowing state-dependency does seem to be a good idea, it has its own pitfalls
when applying the adaptive procedure to networks of queues. The main problem lies
in the fact that the number of states grows very quickly with the number of nodes
in the network, or, for some problems, can be even infinite. For example, if we are
interested in the probability of an individual buffer overflow in a network where all
other queues have infinite buffers, we obtain an infinite state space (hence, can not
store the information for all states in a computer memory), which makes the above
described algorithm in its present form completely inapplicable.

To overcome the problem of large state spaces several techniques can be used, like,
for example, local average, boundary layers and splines (e.g., [32], [10], [13]). Each
of these deals with a specific part of a large state space problem.

Local averaging helps to overcome the problem with rarely visited states. When
the state space is large some states during the simulation may not be visited, or are
not visited often enough, which leads to very high relative errors for this kind of states.
By averaging the statistic over neighboring states this problem can be overcome; it
also helps to reduce relative errors of the estimated quantities (in case of Markovian
models those quantities are the new rates or transition probabilities).

Boundary layers are used to reduce the state space directly by combining the
states with a large number of customers at some queue in one state (i.e., in some
sense, truncating the state space). It is based on the assumption that dependence
on the content of the buffer diminishes when the number of customers increases. For
example, in a two node network with finite buffers of size, say, N = 100 and the
probability of interest being the first time one of the buffers gets full, i.e., reaches
level N , the size of the state space is equal to (N + 1) · (N + 1) = 10201. If we
choose, say, 4 boundary layers, the state space can be reduced to 25 states, which
is more than 400 times smaller! (In that case the state space consists of the states
(0,0),...,(0,4),(1,0),..,(1,4),...,(4,0),...,(4,4) where states (4,j) and (i,4) represent all
states with at least 4 customers at the first or the second queue, respectively.) The
number of boundary layers b is usually chosen by trial and error. If b is too small, the
resulting estimate may not converge since the change of measure is close to a state-
independent, which does not always work, or will have high relative error. For too
large b the convergence can be slow since there are too many states to be processed.

Smoothing using spline fitting is another technique. In general the idea of smooth-
ing is to reduce the “noise” in the resulting rate functions by approximating them with
smooth functions. It can be done, for example, by dividing the state space domain
into segments and, then, choosing some approximating (smooth) function on each
segment. When these functions are chosen to be polynomials (splines), the smooth-
ing technique is called smoothing using spline fitting. The smoothing technique has
several advantages. First, it allows to keep the state-dependence property. Second,
it gives a significant convergence speed-up in cases of very “noisy” approximations of
rate functions. On the other hand, if the transition rates are already smooth enough,
doing spline fitting can lead to a higher variance of the resulting estimates, i.e., worsen
the accuracy.
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2.6 Summary

In this chapter we have given an overview of rare event simulation techniques. We
have seen that Monte Carlo simulation can not be used when one aims to find the
probability of an event which occurs only rarely, so techniques like splitting method
or Importance Sampling (IS) method have to be applied. The IS method aims to find
a new probability distribution (a change of measure) that makes the event occur more
frequently. Several ways of doing this were discussed: an analytical approach, which
is limited to only simple and small networks; an adaptive method, which aims to
find a change of measure by an iterative algorithm either minimizing the variance of
the estimator, or some distance (like cross entropy) to the “optimal” (zero-variance)
distribution (the original distribution conditioned on the occurrence of the rare event).
Though adaptive method can be applied for different types of Jackson networks, it
is more applicable for small networks of two or three nodes. Starting with four node
networks it might experience slow convergence, or, sometimes, might not converge at
all. Finally, heuristic methods have also been discussed and it was shown that the
existing heuristics are applicable only for restricted network parameters. Thus, the
necessity for a new approach is clear.

In this thesis we will propose new heuristics applicable for various types of Jackson
networks (tandem, parallel, feed-forward and feed-back) and all network parameters.
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Chapter 3

State-dependent heuristics for
tandem networks

In this chapter we discuss state-dependent heuristics for simulating population over-
flow in tandem networks. Section 3.1 provides the formal model and notation. Sec-
tions 3.2 and 3.3 discuss the heuristics for two and d-node tandem networks, respec-
tively. Section 3.4 describes how we compare the performance of different methods.
Sections 3.5–3.6 include simulation results and discuss performance gain in compari-
son with other methods (Section 3.5) and validation of the proposed heuristics (Sec-
tion 3.6).

3.1 Model and notation

Consider a Jackson network consisting of d nodes (queues) in tandem. Customers
arrive at the first node according to a Poisson process with rate λ. The service time
of a customer at node i is exponentially distributed with rate µi. Customers that
leave node i join node i + 1 (if i < d) or leave the network (if i = d). Each node
has its own buffer, which is assumed to be infinite. We also assume that the queuing
network is stable, i.e.,

λ < min
i
{µi}, (3.1)

and the rates are normalized, i.e.,

λ +
d∑

i=1

µi = 1. (3.2)

Let Xi,t (1 ≤ i ≤ d) denote the number of customers at node i at time t ≥ 0
(including those in service). Then the vector Xt = (x1,t, x2,t, ..., xd,t) is a Markov
process representing the state of the network at time t. Denote by St the total number
of customers in the network (network population) at time t, i.e., St =

∑d
i=1 xi,t.

Assuming that the initial network state is X0 = (1, 0, ..., 0), i.e., upon an arrival of
the first customer to an empty network (the probability of arrival to an empty network
is equal to one), we are interested in the probability that the network population



20 Ch. 3 State-dependent heuristics for tandem networks

reaches some high level N ∈ N before returning to 0. We denote this probability by
γ(N) and refer to it as the population overflow probability, starting from an empty
network.

3.2 Two-node tandem networks

As discussed in Section 2.4.2 even for the simplest (2-node) tandem network, there
is no state-independent change of measure which is asymptotically efficient over the
entire range of feasible network parameters (arrival and service rates) (e.g., [24], [25]).
Only state-dependent change of measures, carefully developed through analysis (e.g.,
[6]) or determined using adaptive optimization methods (e.g., [12], [13]), have shown
to be efficient in cases where no state-independent change of measure is known to
work. Unfortunately, recently proposed methods (e.g., [6], [12], [13]) to determine
state-dependent change of measures have some drawbacks. It is not clear whether
the analysis in [6] can be easily extended to larger and more general networks. Simi-
larly, computational demands and large state-space limit the effectiveness of adaptive
methods (e.g., [12], [13]).

In this section we propose a new approach and use it to determine a state-
dependent change of measure to estimate the probability of population overflow in
2-node tandem networks. Although no proofs of asymptotic efficiency are provided,
the heuristics are motivated by arguments based on “time-reversal” of large deviation
paths [38] and are empirically shown to yield estimates with bounded (or linear in N)
relative error.

3.2.1 Motivation of the heuristic

The change of measure proposed in this section is inspired by theoretical and empirical
results in [6] and [13]. These results indicate that the “optimal” change of measure
depends on the state of the network, i.e., the number of customers at the network
nodes. Furthermore, this dependence is strong along the boundaries of the state-space
(i.e., when one or more buffers are empty) and eventually (often quickly) disappears
in the interior of the state-space (i.e., when the contents of all nodes in the network
are sufficiently large).

The above observation suggests that if we know the “optimal” change of measure
along the boundaries and in the interior of the state-space, then we might be able
to “construct” a change of measure that approximates the “optimal” one over the
entire state-space. If the approximation is sufficiently good, then the change of mea-
sure may yield asymptotically efficient estimators. Empirical results and comparisons
in Section 3.6 indeed confirm that changes of measure constructed in that way pro-
duce asymptotically efficient estimators with a bounded relative error for all feasible
parameters of the 2-node tandem network.

To realize the above idea we need to determine the “optimal” change of measure in
the interior and along the boundaries of the state-space. To do that, we use heuristics
based on combining known large deviations results and “time-reversal” arguments, as
explained in the following section.
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Figure 3.1: Time reversal of the 2-node tandem network

3.2.2 Time reversal argument

In this section we apply time reversal arguments [44] to give an insight to the change
of measure we are going to introduce in Section 3.2.3; this, by no means, is a formal
proof of asymptotic efficiency.

The reverse time process is also a 2-node tandem network (see Figure 3.1); how-
ever, arrivals (rate λ) enter the network at node 2 (service rate µ2) and exit from
node 1 (service rate µ1). Roughly speaking, according to [38], in the limit as N →∞,
the most likely path to the rare set (i.e., population overflow) in the forward time
process is the same path by which the reverse time process evolves, given that the
latter starts from the rare set. Since both node 1 and node 2 may be non-empty
upon entry into the rare set, the hitting state (x1, x2), is somewhere along the line
x1 + x2 = N .

Let µ2 ≤ µ1, and the reverse time process starts at (n1, n2) such that n1+n2 = N .
Node 2 has arrival rate λ and initially (if n2 > 0) its departure rate is µ2, thus it
empties at rate (µ2 − λ). In the meantime, node 1 has arrival rate µ2 and (if n1 > 0)
departure rate µ1, thus it empties at rate (µ1 − µ2). If µ1 = µ2, then node 1 is
“critical” and does not empty; this corresponds to Path III in Figure 3.2. If and when
node 2 empties first, its arrival and departure rates are equal to λ. At that time,
node 1 has arrival rate λ and departure rate µ1, thus it empties at rate (µ1 − λ).
This corresponds to Path III and Path II (to the right) in Figure 3.2. If and when
node 1 empties first, its arrival and departure rates are equal to µ2. At that time,
node 2 has arrival rate λ and departure rate µ2, thus it empties at rate (µ2−λ). This
corresponds to Path I and Path II (to the left) in Figure 3.2.

Note that departures (resp. arrivals) in reverse time correspond to arrivals (resp.
departures) in forward time. It follows that along the most likely path from an empty
network to population overflow (in forward-time), there are two possible scenarios
depending on the entry state (n1, n2) into the rare set, which in turn depends on the
arrival and service rates: One scenario corresponds to Path II (to the right), which is
more likely when µ2 is less than, but sufficiently close to, µ1. In this scenario, node 1
builds up first while node 2 is stable (i.e., λ̃ = µ1, µ̃1 = λ, µ̃2 = µ2). At some point,
also node 2 starts to build up until the rare set is hit (i.e., λ̃ = µ1, µ̃1 = µ2, µ̃2 = λ).
Path III is simply the limit of Path II when µ1 = µ2. A second scenario corresponds
to Path II (to the left), which is more likely when µ2 is less than, but not sufficiently
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Figure 3.2: Most likely path to population overflow in a 2-node tandem network
(µ1 ≥ µ2)

close to, µ1. In this scenario, node 2 builds up first while node 1 is stable (i.e.,
λ̃ = µ2, µ̃1 = µ1, µ̃2 = λ). At some point, also node 1 starts to build up until the rare
set is hit (i.e., λ̃ = µ1, µ̃1 = µ2, µ̃2 = λ). Path II tends to Path I when µ2 ¿ µ1.

Now, if µ2 ≤ µ1, then the heuristic in [15] exchanges λ and µ2 leaving µ1 un-
changed; i.e., node 1 is stable, and node 2 builds up all the way until the rare set is
hit. This corresponds to the Path PW in Figure 3.2. It is interesting to note that for
µ2 ¿ µ1 Path I is the most likely and it gets closer to Path PW, which explains the
effectiveness of the heuristic in [15] for sufficiently small µ2. For larger µ2 (closer to
µ1) the most likely path gets closer to Path II and deviates further from Path PW,
which explains why the heuristic in [15] becomes ineffective in this case.

Similar discussion can be applied for the case µ1 < µ2 with the only difference
that in case when both nodes are non-empty node 1 builds up with rate µ2 − µ1

(instead of emptying). Another difference is that the case when node 2 is non-empty
and node 1 is empty quickly goes to the case when both nodes are non-empty since
output rate from node 2 is larger than the output rate from node 1. Thus, in case
µ1 < µ2 Path III and Path II (to the right) are more probable, i.e., node 1 builds up
first, and then, node 2.

Thus, in both cases (µ1 ≥ µ2 and µ1 < µ2) there are three possibilities: either
node 1 or node 2 builds up (i.e., λ̃ = µ1, µ̃1 = λ, µ̃2 = µ2, or λ̃ = µ2, µ̃1 = µ1, µ̃2 = λ),
or both of them simultaneously (i.e., λ̃ = µ1, µ̃1 = µ2, µ̃2 = λ).

Below we propose the heuristic (and its improved version), which is a combination
of two over three possibilities and which can (roughly) capture the most likely path
to overflow (i.e., Path I, Path II or Path III, depending on the network parameters).
This clarifies the apparent robustness and effectiveness of this heuristic over the entire
feasible parameter range (as evidenced from experimental results in Sections 3.5–3.6).
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Figure 3.3: the SDH change of measure

3.2.3 State-dependent heuristic (SDH)

Let x = (x1, x2) be the state of the network at some time t. Define as λ̃, µ̃1, µ̃2

the arrival and the service rates corresponding to the importance sampling change of
measure. Note that λ̃, µ̃1, µ̃2 may, in general, depend on the state of the network and,
thus, are functions of the buffer contents x1 and x2. As before (see Equation (3.2)),
we assume that λ̃ + µ̃1 + µ̃2 = 1.

Define [a]+ = max(a, 0) and [a]1 = min(a, 1), and let 0 ≤ b ≤ N be a fixed
integer. The following equations describe the proposed change of measure (SDH) for
the 2-node tandem network:

λ̃(x2) =
[
b− x2

b

]+

· µ1 +
[x2

b

]1

· µ2, (3.3)

µ̃1(x2) =
[
b− x2

b

]+

· λ +
[x2

b

]1

· µ1, (3.4)

µ̃2(x2) =
[
b− x2

b

]+

· µ2 +
[x2

b

]1

· λ, (3.5)

µ̃2(0, 1) = 0. (3.6)

Note that, except for Equation (3.6), the new arrival and service rates depend on the
state of the network only through x2, the buffer content at the second node, and as
long as x2 < b. When x2 exceeds value b SDH no longer changes.

Note also that since λ̃ + µ̃1 + µ̃2 = 1, Equation (3.6) implies λ̃(0, 1) = 1 (since
µ̃1(0, 1) = 0 and µ̃2(0, 1) = 0) and guarantees that during the simulation all cycles
hit the rare set (the overflow level N).

The above heuristic (SDH) is a combination of two changes of measure (M1) and
(M2) (as indicated schematically in Figure 3.3). Along the boundary, x2 = 0, the
change of measure is M1 given by:

M1 :





λ̃ = µ1,
µ̃1 = λ,
µ̃2 = µ2.

When x2 ≥ b, the change of measure is M2 given by:

M2 :





λ̃ = µ2,
µ̃1 = µ1,
µ̃2 = λ.
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Figure 3.4: Change of rates in SDH

Roughly speaking, M1 is SDH at b = ∞; M2 is SDH at b = 0. In the interim,
0 < x2 < b, the new rates are simply linear functions of x2, i.e., linear interpolation
from their values at x2 = 0 to their values at x2 = b (see Figure 3.4). The proposed
change of measure indeed can (roughly) follow the most likely path to population
overflow, discussed in Section 3.2.2. Let us follow a sample path starting from an
arrival to an empty network. SDH implies the following: initially, and while x2 = 0,
exchange the arrival rate (λ) with the service rate at node 1 (µ1), i.e., start with
the first node being unstable and the second node is stable. As the buffer content in
the second buffer increases in the range (0 < x2 < b), gradually and simultaneously
reduce the “load” on the first node while increasing the “load” on the second node.
When the buffer content at the second node reaches (and exceeds) level b, exchange
the arrival rate (λ) with the service rate at node 2 (µ2). That is, as long as x2 ≥ b
the second node is unstable and the first node is stable (if µ1 > µ2) or unstable (if
µ1 < µ2), and the new rates do not depend on the network state.

Remark 3.2.1. Note that the only variable parameter in the above heuristic is a
number b, called the boundary level, for which the change of measure depends on the
network state. Proper selection of b is crucial for asymptotic efficiency of the proposed
heuristic. In Section 3.6.1 we discuss the algorithm for finding the optimal value b
(the b which yields estimates with the lowest variance). According to experimental
results (Sections 3.6) the best value of b depends on the network parameters and, in
some cases, also on the overflow level N .

Remark 3.2.2. Note that without Equation (3.6) SDH is equal, on its extremes (i.e.
when b = 0 or b = ∞) to PW; M1 is PW for µ1 < µ2 and M2 is PW for µ1 > µ2

(by definition, M2 is applied when x2 ≥ b, i.e., always in case b = 0 (in that case
SDH=M2) and never in case b = ∞ (in that case SDH=M1)).

Remark 3.2.3. The above heuristic is a combination of two possible scenarios dis-
cussed in Section 3.2.2 (i.e., it is either, node 1 is overloaded (“pushed”), or node 2).
We also experimented with other combinations, i.e., tried to include the scenario
when both nodes are overloaded (“pushed”) simultaneously, but it was not success-
ful. Apparently, “pushing” both nodes together only degrades the performance and
even “pushing” one node too much can already do that (as evidenced from the Section
below).
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Figure 3.5: the SDHI change of measure

3.2.4 Improved heuristic (SDHI)

It is important to note that the most likely path to the rare set (as predicted from
time reversal) may not necessarily correspond to the actual (or “optimal”) one, par-
ticularly along the boundaries (i.e., when one of the nodes is empty). Thus, a proper
adjustment to the proposed change of measure along the boundaries may result in
significant efficiency improvement. Indeed, it turns out (as we empirically observed,
see Sections 3.5.1–3.5.2) that the proposed change of measure (SDH) described in
Section 3.2.3 tends to “over-bias” unstable nodes along and close to the boundaries,
i.e., x1 and/or x2 close to 0. Let us consider, for example, the case x1 = 0 and x2 ≥ b
(i.e., far from the influence of the border x2 = 0). Then SDH = M2 and for µ1 < µ2

both nodes will be unstable. On the boundary x2 = 0 the change of measure SDH
= M1; the first queue is unstable and in case µ1 > µ2 it may lead to “over pushing”
the first node, and, hence, make a heuristic less effective.

This observation prompted the modified change of measure, described as follows
(in the sequel, we refer to it as SDHI):

SDHI :





λ̃(x2) = min(µ1, µ2),

µ̃1(x2) =
[
b− x2

b

]+

· λ +
[x2

b

]1

·max(µ1, µ2),

µ̃2(x2) =
[
b− x2

b

]+

·max(µ1, µ2) +
[x2

b

]1

· λ,

µ̃2(0, 1) = 0.

where [a]+ = max(a, 0) and [a]1 = min(a, 1), and b is a fixed integer between 0 and N
(i.e. 0 ≤ b ≤ N).

Note that, unlike the SDH change of measure, the arrival rate in SDHI is
independent of x2. The modified heuristic (SDHI) suggests two changes of measures
(M̃1) and (M̃2) (as indicated schematically in Figure 3.5).

Along the boundary, x2 = 0, the change of measure (M̃1) is given by:

M̃1 :





λ̃ = min(µ1, µ2),
µ̃1 = λ,
µ̃2 = max(µ1, µ2).
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Figure 3.6: Change of rates in SDHI

When x2 ≥ b, the change of measure (M̃2) is given by:

M̃2 :





λ̃ = min(µ1, µ2),
µ̃1 = max(µ1, µ2),
µ̃2 = λ.

Note that, similar to the SDH change of measure, the new rates for SDHI are also
linear functions of x2, but with the new arrival rate being a constant (see Figure 3.6).

Let us follow a sample path starting from an arrival to an empty network. The
proposed change of measure implies the following: the arrival rate is fixed at the
minimum service rate; initially, and while x2 = 0, node 1 is unstable with service
rate λ, and node 2 is stable with service rate µ2 if µ2 > µ1 and the service rate µ1

if µ1 > µ2. When the buffer content at node 2 reaches (and exceeds) level b, node 2
is unstable with service rate λ, and node 1 is stable (if µ1 6= µ2) or “critical” (if
µ1 = µ2).

Remark 3.2.4. Note that in case µ1 = µ2 SDH and SDHI are equivalent (i.e.,
SDH≡SDHI; henceforward, by sign “≡” we mean “equivalent”).

Remark 3.2.5. Note also that M̃1 = M1 for µ1 < µ2 and M̃2 = M2 for µ1 > µ2,
i.e., SDH and SDHI behave the same way in case µ1 < µ2 on the border x2 = 0 and in
case µ1 > µ2 when x2 ≥ b; or, this can be reformulated as: SDHI differs from SDH in
case µ1 > µ2 on the border x2 = 0 and in case µ1 < µ2 for x2 ≥ b (and, consequently,
also on the border x1 = 0).

For the 2-node tandem network, the above modified heuristic (SDHI) performs at
least as good as SDH (see experimental results in Sections 3.5.1) and in most of the
cases even better (cf. Section 3.6.1).

3.3 Multiple-node tandem networks

In this section we discuss extension of the proposed heuristics SDH and SDHI for
networks with more than two nodes in tandem.
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3.3.1 State-dependent heuristic (SDH)

As before, let λ and µi (i = 1, . . . , d) be the arrival rate at the first node and the
service rate at the ith node, respectively. Without loss of generality we assume that
λ +

∑d
i=1 µi = 1. Denote by λ̃, µ̃i the corresponding rates under the new change of

measure, and by SDHd the (d + 1) × (d + 1) SDH transformation matrix for the
d-node tandem network. Thus, SDHd is a linear operator transforming the original
rates into the new rates. In Section 3.2.3 we used different representation of SDH to
give a reader the idea of how it works. In this section we aim to extend the heuristic
for more queues and, thus, want it to be more compact. For d = 2, the change of
measure in Section 3.2.3 can now be expressed as follows




λ̃
µ̃1

µ̃2


 = SDH2 ·




λ
µ1

µ2


 , (3.7)

µ̃2(0, 1) = 0, (3.8)

where

SDH2 =
[
b− x2

b

]+

·



0 1 0
1 0 0
0 0 1


 +

[x2

b

]1

·



0 0 1
0 1 0
1 0 0


 . (3.9)

The first matrix is the identity matrix with the first and the second rows interchanged;
this corresponds to interchanging the arrival rate λ with the service rate µ1. The
second matrix is the identity matrix with the first and the third rows interchanged;
this corresponds to interchanging the arrival rate λ with the service rate µ2.

The above heuristic can be generalized for a d-node tandem network. Define the
transformation matrix SDHd recursively as follows:

SDHk =
[
bk − xk

bk

]+

· SDHk−1 +
[
xk

bk

]1

· Ik, k = 2, . . . , d, (3.10)

with

SDH1 = I1 =




0 1 0 0 . . . 0
1 0 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1




, (3.11)

Ik is the identity matrix of dimension (d + 1) with the first and the (k + 1)-st rows
interchanged. Then, SDH for an d-node tandem network is given by




λ̃
µ̃1

...
µ̃d


 = SDHd ·




λ
µ1

...
µd


 , (3.12)

µ̃d(0, ..., 0, 1) = 0. (3.13)



28 Ch. 3 State-dependent heuristics for tandem networks

Remark 3.3.1. Note that the parameter b in the above heuristic became bk, i.e., the
number of boundary layers for which SDH depends on the number of customers at
queue k may now be different from one queue to another (for 2-node tandem queues
we omitted the index 2, i.e., there b = b2). In Section 3.6.2 we will discuss this issue
in more detail and will give a guideline for finding the bk(opt) for each k.

Note also that for d = 1 (a single queue), SDHd corresponds to the PW heuris-
tic of interchanging the arrival rate λ and the service rate µ [15]. For d = 3, the
transformation matrix SDH3 is as follows:

SDH3 =
[
b3 − x3

b3

]+

·
([

b3 − x2

b3

]+

· I1 + ·
[
x2

b2

]1

· I2

)
+

[
x3

b3

]1

· I3, (3.14)

where

I1 =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 , I2 =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


 , I3 =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 , (3.15)

where the first matrix (I1) corresponds to interchanging λ and µ1, the second matrix
(I2) corresponds to interchanging λ and µ2 and the third matrix (I3) corresponds to
interchanging λ and µ3. Initially, the network is empty and we start by interchanging
the arrival rate λ and µ1, i.e., biasing the first node. As soon as a customer arrives
at node 2, we also start biasing the second node by gradually increasing the weight
of matrix I2 and reducing the weight of matrix I1. When the number of customers
at node 2 is sufficiently large (x2 > b2), the weight of matrix I1 becomes 0. In the
meantime, as soon as a customer arrives at node 3, we start biasing the third node
by gradually increasing the weight of matrix I3 and reducing the weights of matrices
I1 and I2. When the number of customers at node 3 is sufficiently large (x3 > b3),
the weights of matrices I1 and I2 become 0.

3.3.2 Improved heuristic (SDHI)

As discussed in Section 3.2.4 for the 2-node tandem case, the SDH change of measure
can be improved. This improved version (SDHI) can also be extended for more than
2 queues in tandem. From now on we consider only the case of ordered queues, i.e.,
µi > µi+1 for i = 1, ..., d − 1, which is enough according to the interchangeability
argument given in [45]. Let us, first, reformulate the SDHI change of measure for a
2-node tandem network (µ1 ≥ µ2). More formally it can be described as follows:




λ̃
µ̃1

µ̃2


 = SDHI2 ·




λ
µ1

µ2


 , (3.16)

µ̃2(0, 1) = 0, (3.17)

where

SDHI2 =
[
b− x2

b

]+

·



0 0 1
1 0 0
0 1 0


 + ·

[x2

b

]1




0 0 1
0 1 0
1 0 0


 . (3.18)
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The second matrix corresponds to interchanging the arrival rate λ and the service
rate at the second node (µ2) (and is equal to the identity matrix with the first and
the last rows interchanged). The first matrix corresponds to the change of measure:
λ̃ = µ2, µ̃1 = λ and µ̃2 = µ1, i.e., the last row of the identity matrix becomes the first
row, the first row becomes the second and the second becomes the third (i.e. first two
rows are shifted down).

The generalization of the alternative heuristic (SDHI) for d nodes in tandem can
be formalized as follows:

SDHIk =
[
bk − xk

bk

]+

· SDHIk−1 +
[
xk

bk

]1

· Jk, k = 2, . . . , d , (3.19)

with

SDHI1 = J1 =




0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0




. (3.20)

Then SDHI for an d-node tandem network is given by



λ̃
µ̃1

...
µ̃d


 = SDHId ·




λ
µ1

...
µd


 , (3.21)

µ̃d(0, ..., 0, 1) = 0. (3.22)

Jk is constructed as follows: in the identity matrix of dimension (d + 1) all rows
i ≥ k + 1 are pushed down (by one row); the first row goes to the (k + 1)-st row
(which is now empty) and the last row (which is pushed out) goes to the first row.
This corresponds to µ̃k = λ, µ̃i = µi−1 for i = k + 1, . . . , d, λ̃ = µd and means the
following: we “push” node k by decreasing its service rate, but, unlike SDHd (where
it was done by interchanging the arrival rate λ with the service rate at the kth node
(µk)), SDHId makes the new arrival rate always equal to µd (i.e. “pushes” node
k less since µd=min(µi)); all the service rates up and including to node k − 1 stay
unchanged, i.e., all queues are stable (if µi > µi+1 for all i) or some of them become
unstable (if for some i µi = µi+1); the service rate at node k is equal to λ (i.e. queue k
is unstable) and all the service rates from node k + 1 get the “available” (we consider
only permutations of rates) values of the service rates in the descending order, i.e.
the service rate at node k + 1 becomes equal to µk, the service rate at node k + 2
becomes equal to µk+1 and so on. In case of a 3-node tandem network we have the
following:

SDHI3 =
[
b3 − x3

b3

]+

·
([

b2 − x2

b2

]+

· J1 +
[
x2

b2

]1

· J2

)
+

[
x3

b3

]1

· J3, (3.23)



30 Ch. 3 State-dependent heuristics for tandem networks

where

J1 =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 , J2 =




0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0


 , J3 =




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


 . (3.24)

J3 corresponds to “pushing” node 3 by interchanging the arrival rate λ with the
service rate µ3 (λ̃ = µ3, µ̃1 = µ1, µ̃2 = µ2, µ̃3 = λ); J2 corresponds to “mild pushing”
of node 2, i.e., by making λ̃ = µ3, µ̃1 = µ1, µ̃2 = λ, µ̃3 = µ2 and J1 corresponds to
“mild pushing” of node 1, i.e. λ̃ = µ3, µ̃1 = λ, µ̃2 = µ1, µ̃3 = µ2.

Note that both heuristics SDH and SDHI depend on number of customers at
all nodes except the first. However, unlike SDH, in SDHI the new arrival rate is
independent of xi, 1 ≤ i ≤ d and is equal to min(µ1, . . . , µd). Empirical results
in Sections 3.5.1–3.5.2 confirm that the modified heuristic (SDHI) performs slightly
better than SDH.

3.4 Performance comparison

In this section we describes general issues concerning simulation (Section 3.4.1) and
discuss methods used for performance comparison together with restrictions used
while gathering the experimental results (Section 3.4.2).

3.4.1 Simulation

Define a busy cycle as the period starting with an empty system and ending at the
instant the system, for the first time, either reaches level N or becomes empty again.
Starting a cycle at time 0, let TN define the first time the network population reaches
level N and T0 the first time the network population returns to 0 again. Importance
sampling simulation to estimate the probability of population overflow γ(N) involves
generating, say, n of those cycles with the new probability distribution, e.g., SDH or
SDHI, chosen in the beginning and used during the entire simulation. The indicator
function Ii(TN < T0) takes the value 1 if cycle i ended at level N and the value 0,
otherwise. Then an unbiased estimator γ̃(N) of γ(N) is given by

γ̃(N) =
1
n

n∑

i=1

Ii Li , (3.25)

where Li is the likelihood ratio associated with cycle i. The second moment (σ2) of
the random variable I · L (the indicator function of the rare event multiplied by the
likelihood ratio) is estimated by

σ2 =
1
n

n∑

i=1

Ii Li
2 . (3.26)

The variance V ar(γ̃(N)) and the relative error RE (γ̃(N)) of the importance sampling
estimator γ̃(N) are given by:

V ar(γ̃(N)) =
1

n− 1
( σ2 − (γ̃(N))2 ) , (3.27)
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RE (γ̃(N)) =

√
V ar(γ̃(N))

γ̃(N)
. (3.28)

RE can be used to check the performance of the importance sampling estimator (an
estimator with bounded RE would give the same RE for any value of level N).

It can also be used to compare the efficiency of different estimators (estimators
obtained with different changes of measure), but only for those that work equally
fast, i.e., require approximately the same amount of simulation time per number of
simulation cycles. In that case, the change of measure with smaller RE is the best of
these two. In general, however, for the same number of (simulation) cycles, different
changes of measure may need different amount of (simulation) time. Since RE does
not include simulation time, it can not be applied for a fair comparison of such
measures. In that case the relative time variance (RTV ) product is employed, which
is defined as the simulation time T (in seconds) multiplied by the squared relative
error of the estimator:

RTV = T · RE 2. (3.29)

RTV is a good measure of comparison between two changes of measures since it
reflects not only the RE of the estimator but also takes into account the effort (sim-
ulation time) needed to get this RE . Thus, the change of measure with the smallest
(over some set of changes of measure) RTV is optimal in the sense that it takes the
smallest amount of time to get the same RE . In other words, if RTV 1 for estima-
tor 1 is smaller than RTV 2 for estimator 2, then it will take estimator 1 a shorter
simulation time to reach the same accuracy. Note, that for the above described case
(when two estimators have the same simulation time T = T1 = T2) comparing RTV ’s
indeed reduces to comparing RE ’s since RTV k = T · REk

2 and RTV i > RTV j ⇔
RE i > RE j . For a large number of samples n the simulation time T is proportional1

to n. We call the estimate stable if it has a bounded variance (note, that “being
stable” is a “normal” characteristic of a direct estimator and a “well behaving” IS
estimator). The sample variance of a stable estimator is inversely proportional to n,
RE is inversely proportional to

√
n and RTV tends to a constant value, which is

smaller for a more efficient estimator.
We introduce the efficiency gain of using estimator 1 over estimator 2 as the

variance reduction ratio (e.g., [21]):

VRR =
RTV 2

RTV 1
. (3.30)

Namely, VRR > 1 if the estimator 1 is more efficient than estimator 2, and VRR ≤ 1
otherwise. We use this ratio for comparing the efficiency of different importance
sampling heuristics in the next section.

1 T =
Pn

i=1 ti where ti is time needed for simulating cycle i; since ti’s are independent, for large
n the sum

Pn
i=1 ti/n tends to a constant value t̄ and T = n · t̄
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3.4.2 Methods used for performance comparison

We run simulation experiments with three different methods:

1) the PW heuristic to show where it does, or does not work;

2) the SDA method, the state-dependent change of measure determined using the
adaptive methodology defined in [32] and discussed in Section 2.5. In our compar-
ison we used two out of three techniques described in [32], namely, local average
and boundary layers, and did not use spline fitting;

3) the SDH and SDHI (state-dependent) heuristics described in Section 3.2.3 and
Section 3.2.4, respectively (typed SDHs, when referring to both of them).

We also included numerical results (using the algorithm outlined in [32], [27]) to verify
the correctness of the simulation estimates.

Remark 3.4.1. The numerical algorithm in [32], [27] involves inverting O(N) number
of matrices of size O(Nd−1) where N is the overflow level and d is the number of queues
in the network. Thus, already for networks with more than two nodes, the size of the
matrices grows very quickly with the overflow level, which restricts the applicability
of the method to only small networks. For three queues we were able to calculate the
exact probabilities for levels up to N = 50; for four queues we could to do that only
for levels not larger than N = 25.

The state-dependent heuristics (SDA and both SDHs) assume dependence on the
network state, but only for some small number b of boundary layers: for SDA de-
pendence is on states (x1, x2), where 0 ≤ x1, x2 ≤ b and for SDHs on states (., x2),
where 0 ≤ x2 ≤ b, i.e., in SDHs there is no dependence on x1, the number of cus-
tomers at the first queue. In both SDHs or SDA, the best (i.e., the optimal) b can
be determined by repeating the simulation for increasing values of b, starting with
b = 0, i.e., no state-dependence. For the SDA algorithm we started with b = 1 since
it is the minimum possible value of b that can be used (without specifically defining
what SDA would mean in case b = 0). The best b is the one that yields the maximum
efficiency (or minimum RTV ).

Remark 3.4.2. It is important to note that it is very difficult (if possible at all) to
ensure fair comparison between the SDA and SDHs methods since they are funda-
mentally different. The main difference lies in the fact that SDA, in principle, has
quadratic convergence2, i.e., the RE of a stable estimator decreases proportionally
to the number of cycles n (not

√
n as for SDHs), and, hence, RTV decreases with

increasing n (i.e., it is not a constant value as an RTV of a stable SDHs estimate).

Thus, if we run all methods long enough, i.e., enough to ensure that SDA converges
(in case it does) and gets small RTV , and, the same amount of time for SDHs, then
SDA will “win” (if converged), i.e., will give the smallest RTV and, at the same
time, the smallest RE . The problem, however, is that the simulation time required
to be able to achieve that is sometimes prohibitively long (several hours), although

2this is the characteristic of “unlimited” SDA, i.e., SDA without any restrictions (like boundary
layers, local average or splines); applying one or more of those techniques may lead to the degradation
of this feature
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in such cases we might get RE for SDA less than 0.001%. In practice, one is usually
satisfied with RE of 1% especially if it means short simulation time. One can reduce
the amount of simulation time by reducing the number of simulation cycles n, but
for SDA this is not always possible, since having less cycles may not be enough
for convergence. Note also, that there exist situations where for a given number of
replications SDA does not converge. In such cases SDHs always win. Later in this
section (for the case of 3 and 4 queues in tandem, cf. Remark 3.5.2) we will discuss
this issue in more detail.

Restrictions used while gathering the results

To ensure somewhat fair comparison, we made several restrictions:

1) SDA was run at 105 cycles until RE became less than 1% and then two iterations
at 106 cycles were performed. Due to quadratic convergence the second iteration
usually decreased RE of the SDA estimator by

√
10 and, hence, increased the

performance by a factor of 10. Further iterations did not give such an improvement.
For comparison, only the second iteration (at 106 cycles) was considered;

2) in SDHs the estimates were calculated for 106 replications;

3) in both SDHs and SDA we assumed that the optimal parameter b was predeter-
mined and used to run the simulation.
The time needed to get these optimal values was not included since in all cases
(SDA and both SDHs) we needed to find the bopt by trial and error. The amount
of time spent on this was impossible to predict since it depends on how close the
initial guess was to the optimal value. There was also another reason for not
doing this: in Section 3.6.1 the full investigation of bopt on the network parameters
would be done with the clear guideline which one to use for SDHI (Section 3.6.1,
Proposition 3). Note that there would be no guideline how to choose the bopt for
SDA or SDH; the only observation was that the bopt for SDH was very often near
the bopt for SDHI.

3.5 Experimental results

In this section we consider tandem networks and present experimental results obtained
using the SDH and SDHI heuristics proposed in Section 3.3.1 and Section 3.3.2,
respectively. Sections 3.5.1–3.5.2 show the performance of the proposed changes of
measure in comparison with other methods.

Since there is more background information available for a 2-node tandem networks
in comparison with 3- and 4-node networks, we separate the discussion for the 2-node
case in a distinct subsection.

3.5.1 Performance for 2 queues in tandem

As discussed in Section 2.4.2, the PW heuristic yields asymptotically efficient esti-
mates with bounded relative error only for some values of feasible network parame-
ters. In [25] it was shown that they can be classified in three different regions (see
Figure 3.7):
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Figure 3.7: Asymptotic efficiency of PW in the feasible parameter space
(as shown in [25])

BRE region: PW yields estimates with bounded relative error;
ERE region: PW yields estimates with exponentially growing relative error;
IRE region: PW yields estimates with infinite variance/relative error.

Thus, for the network parameters belonging to the BRE region, an asymptotically
efficient state-independent change of measure with bounded relative error is already
known (PW). For the ERE and IRE regions, only state-dependent change of measure,
determined adaptively or using some heuristic guess, can be asymptotically efficient
(see [25]). The goal of this section is to show that the SDH and SDHI heuristics have
better performance than the other methods.

For this purpose we chose 8 different parameter points covering all regions in
Figure 3.7 (these points are representative and the results are consistent with extensive
simulations discussed in Section 3.6.1), namely, 2 points in each of the 3 regions (BRE,
ERE, and IRE) and 2 points along the line µ1 = µ2 (networks with equal service rates
appeared to be more difficult for simulation).

Performance

Tables 3.1–3.8 (one table for each of the points indicated in Figure 3.7) include es-
timates of three overflow probability levels (N = 25, 50 and 100) and their relative
error (in percentage) obtained with PW, the SDHs and SDA changes of measure. The
relative error is a good enough indicator for the performance comparison of the PW
and SDHs estimators (since they “work” equivalently fast), but not for comparing
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SDHs and SDA. SDA needs some time to converge and it is unclear how many itera-
tions and how many repetitions per iteration should be performed to get a specified
accuracy. Therefore, restrictions mentioned above were applied and another measure
of comparison (VRR, as discussed in Section 3.4.1) was used. Hence, VRR = 1 for
SDA, and a VRR > 1 implies efficiency gain over SDA.

A careful inspection of Table 3.1 through Table 3.8 leads to the following
observations:

BRE region (Tables 3.1 and 3.2):
All heuristics yield very accurate estimates with bounded relative error. Note,
however, that for Point I-1, SDH and SDHI have an “optimal” b equal to 0. For
this point, SDA outperforms the other heuristics (VRR < 1). For Point I-2, SDH
and SDHI have an “optimal” b = ∞ and yield efficiency gains over SDA (VRR > 1)
except for the level 100 (VRR = 0.92). As noted in Remark 3.2.1, the heuristics
SDH and SDHI reduce to PW for b = 0 (if µ1 > µ2) and for b = ∞ (if µ1 < µ2) with
the only difference that the transition ending a busy cycle in the “empty network”
state is not allowed, i.e., SDH(≡ SDHI) is just Equation (3.6). Since all cycles during
the simulation end in the rare set, SDH and SDHI give the performance gain over PW.

ERE region (Tables 3.3 and 3.4):
Except for PW, all heuristics yield stable estimates. The ‘*’ next to PW in the tables
is to indicate that its estimates are not stable. For Point II-1, SDA, SDH, and SDHI
give bounded relative error, and SDA outperforms SDH and SDHI (VRR < 0.1). It
is not clear why SDA yields much lower relative error for this point than it does for
any other point. For Point II-2, the relative errors seem to grow slowly and linearly
with N , and SDH and SDHI yield efficiency gains over SDA (2 < VRR < 7).

IRE region (Tables 3.5 and 3.6):
Except for PW, all heuristics yield stable estimates. For Point III-1, SDA,
SDH, and SDHI give bounded relative error, with SDH and SDHI being more
efficient than SDA (1 < VRR < 3). For Point III-2, the relative errors seem to
grow linearly with N , and SDH and SDHI yield efficiency gains over SDA (VRR > 3).

ERE/IRE line µ1 = µ2 (Tables 3.7 and 3.8):
Note that for Points IV-1 and IV-2, SDH and SDHI are the same. Except for PW,
all heuristics yield stable estimates with bounded relative error. SDH and SDHI yield
efficiency gains over SDA (1 < VRR < 6).
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Remark 3.5.1. Experimental results in Tables 3.1 through 3.8 show that the pro-
posed heuristics SDH and SDHI yield estimates with bounded relative error for points
with µ1 > µ2, i.e., points in the lower triangle, below the line µ1 = µ2 in Figure 3.7,
as well as for points in the upper BRE region. Only for points in the upper ERE/IRE
Regions II and III (with µ1 ≤ µ2) the SDH and SDHI estimates have a linearly
bounded relative error (see Tables 3.4 and 3.6). Note, however, that according to
the interchangeability argument in [45], the probability of population overflow is in-
variant with respect to the placement order of nodes in a Jackson tandem network.
Therefore, by interchanging the service rates (µ1 and µ2), the overflow probability for
an arbitrary point in the upper ERE/IRE Regions II and III can also be estimated
with bounded relative error.

Sensitivity with respect to b

Table 3.8 is extended to include sensitivity results with respect to the dependence
range b in the SDH for the 2-node tandem network. For different values of b around
the “best” (marked by ‘*’ in the table), we display the resulting estimate along with
its relative error, estimated from simulation and computed numerically. The latter
is included in parentheses and is obtained from an algorithm similar to that outlined
in [25] to compute the variance of the PW importance sampling estimator. Our imple-
mentation of this algorithm is adapted to compute the variance of the SDH estimator
used in the above tandem network examples. As one can see from Table 3.8 the em-
pirical relative error is consistent with the computed relative error. The accuracy of
both the simulation estimates and the computed relative errors is quite robust with
respect to b. Moreover, they numerically establish the bounded relative error property
of the SDH estimator (which is also observed empirically). This is evidenced from
the approximately equal computed relative errors at increasing overflow levels.

3.5.2 Performance for 3 and 4 queues in tandem

In this section we will demonstrate that SDHI gives performance gain over the PW
and SDA methods also in case of 3 and 4 queues in tandem. We do not include
results for SDH, since they showed worse performance; for the 2-node case we will
experimentally show that in Section 3.6.1.

As for 2 queues in tandem, we divide the feasible parameter space into several
regions, depending on the asymptotic properties of the PW change of measure:

BRE region - PW is asymptotically efficient (with bounded relative error)
NAE region - PW is not asymptotically efficient.

The above division, unlike the 2-node case, is based on empirical results, since
the only conditions of asymptotic efficiency of the PW heuristic, discussed in [24],
are rather strong and do not cover the entire parameter space even for the case of
2 nodes, i.e., not all points may be determined as BRE or NAE. The reason to use
the above division is the fact that for 2-node tandem networks, as has been shown
empirically in [25], all feasible network parameters are either in BRE or in NAE (for
2-node tandem NAE = ERE

⋃
IRE). Our empirical studies seem to confirm that it

holds also for tandem networks with 3 and 4 nodes, i.e., for any feasible set of network
parameters, PW is either in BRE or in NAE.
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Several experiments were made for 3 and 4 queues (one set of experiments for
each network). Each set consists of two parameter points: one in the BRE region
and another in the NAE region. In all simulation experiments, the same number
of replications, namely 106, is used to obtain estimates of the population overflow
probability γ(N). These estimates are presented in Table 3.9 through Table 3.12; two
tables for each tandem network with a given number of nodes. For each estimate in
these tables, we include the relative error (in percent). For the purpose of comparing
the SDHI heuristic with SDA, we also include VRR (relative to RTV of SDA). When
VRR > 1 it implies efficiency gain of SDHI over SDA. As before, we also assumed
that the experimental results for SDHI and SDA are obtained using the optimal value
of parameter b for each algorithm, where for SDHI, b means that all parameters bk

are the same, i.e., b2 = b3 = b for a 3-node tandem network and b2 = b3 = b4 = b for
a 4-node tandem network.

Whenever feasible, numerical results (using the algorithm outlined in [32]) are in-
cluded to verify the correctness of the simulation estimates. We note that numerical
results are more difficult to obtain for larger networks and/or higher overflow lev-
els (i.e., for larger state-space). With the available algorithm, we could not obtain
numerical results for table entries marked with a ‘∗’. In these cases, agreement of
different estimators may provide an indication of correctness.

Experimental results in Tables 3.9–3.12 show that both, SDA and SDHI, yield
correct and asymptotically efficient estimates. SDHI outperforms SDA in all cases
except for level 100 for the BRE region of a 4-node tandem network (Table 3.11). The
last case, however, was special (Table 3.11, entry marked as ‘(!)’). The SDA algorithm
(with the restrictions discussed in Section 3.4.2) did not converge and we needed to
use a different approach. Apparently, the starting parameters were not adequate and
105 replications were not enough. To overcome this difficulty, it was recommended
in [32] to use SDA results of lower levels as an input parameters for higher levels (to
improve the starting parameters). Thus, for level 100 the SDA results of level 25
were used and the first iterations were gathered at more replications (5 · 106). Only
in that case SDA converged; even using one of the two improvements did not help.
We also tried the above approach for another point of 4-node tandem network and
another levels. The results are shown in Tables 3.13–3.14. As one can see it improved
the SDA results in some cases (N = 50 in Table 3.13 and N = 100 in Table 3.14)
but made the performance in other (N = 50 in Table 3.14) worse. Thus, there is no
guarantee for using one or another approach.

In our implementation of SDA we did not use the spline technique (described in [32]
and discussed in Chapter 2.5.1), thus, one could argue that the comparison is not fair.
To compensate that, we tried to approximate the run time of SDA-with-splines. As
claimed in [32], the performance of SDA is better if one starts with splines using small
number of replications, and then continues without splines with a larger number of
replications. It was also claimed that with splines one could use less replications,
namely, 104 instead of 105 and 10 iterations were enough for convergence, i.e., a total
of about 105 replications. Thus, for our approximation we took the time of the final
two iterations (at 106 cycles) of SDA, and added 10% to it as a rough estimate of the
time that would be needed for convergence with splines. Note, that we assumed that
SDA with or without splines in the end converged to the same change of measure,
since the final iterations at 106 replications would be done without splines in either
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case. The last column in Tables 3.9–3.12 shows approximation of VRR with the spline
technique (VRRspl). It is clear that using splines would improve the performance of
SDA, but not dramatically. Only in two (from 12) cases, namely, level 50 for for both
examples of 3-node tandem networks, it made SDA more efficient than SDHI. For all
other cases SDHI is still more efficient than SDA.

Remark 3.5.2. Employing quadratic convergence property of SDA
It is important to note, however, that SDA has the quadratic convergence property
(see discussion in Section 3.4.2, Remark 3.4.2). Because of it the RTV of SDA
decreases with increasing number of replications n. Thus, changing the number of
replications after some iterations would allow to employ this property of SDA and
improve its performance, which could lead to decreasing of the efficiency gain of
SDHI over SDA. We tried this approach for the case of 4-node tandem networks,
namely, we let SDA converge with 105 replications, then did 2 iterations with 4 · 105,
2 iterations with 1.6 · 106 and 2 iterations with 6.4 · 106 replications. As one can
see from Tables 3.15–3.16 it significantly improved the performance of SDA for the
BRE point (Table 3.15) and did it a bit for NAE point (Table 3.16), except for level
50. Note, however, that the amount of time spent to achieve this improvement is
very unpractical, i.e., hours comparing with seconds/minutes for the SDHI algorithm.
Thus, in practice, SDHI is more suitable, though, theoretically, SDA will always win
if it is given a lot of time for convergence and for play with number of replications.
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Figure 3.8: ERE and IRE network parameters checked

3.6 Extensive experimental results

In this section we present extensive experimental results to validate the heuristics for
2-node (Section 3.6.1), 3- and 4-node tandem networks (Section 3.6.2), i.e., show that
they work well for all parameter values of tandem networks.

3.6.1 Validation for 2 queues in tandem

In this section we will start with demonstrating that SDHI outperforms SDH for all
network parameters (except the case µ1 = µ2 when they are equivalent). After that
we will show that SDHI indeed yields asymptotically efficient estimates with bounded
or less than linearly growing relative error in the regions where no state-independent
heuristic is known to be efficient. We will also present an algorithm to find the optimal
value of b and give some practical recommendations to get quick results.

An extensive set of experiments was made to cover the network parameters in the
lower (µ1 ≥ µ2) ERE and IRE regions in Figure 3.7 (as mentioned in Remark 3.5.1
(see also [45]) the queue order is interchangeable, so it is sufficient to consider only
networks with the last queue as the bottleneck, i.e., with µ1 ≥ µ2); we also checked
some points in the BRE region to show that SDHs are generally applicable.

Experimental results were gathered applying the SDH and SDHI changes of mea-
sure for three different values of overflow level N , namely 25, 50 and 100.

Different levels were considered to check whether a relative error is bounded, i.e.,
is the same for all levels. For each level several simulation runs were made: at 105,
4 · 105, 16 · 105 and 64 · 105 cycles to check the stability of the estimator. For a
stable estimator if we increase the number of simulation cycles by, say, a factor of 4,
the relative error should decrease by the factor of 2 (

√
4), see Equation (3.29) and

discussion right after it.
In total there were around 300 randomly chosen (with uniform distribution) points

checked: around 250 from the lower ERE and IRE regions (Figure 3.8), half of which
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was with µ1 = µ2 (in this case SDH ≡ SDHI) and 50 points from the BRE region
(not shown in figures).

Several observations that were made based on the obtained experimental results
are discussed below (Propositions 1–5).

Performance of SDHI in comparison with SDH

Proposition 1. For all network parameters SDHI outperforms SDH.

As a measure of comparison between two changes of measure we will use the variance
reduction ratio (see Equation (3.30)). Note, however, that since SDHI and SDH
require approximately the same amount of simulation time the value VRR is just a
ratio of the squared RE values. VRR > 1 means that SDHI works better, otherwise,
SDH works better; VRR = 1 means that they both work equivalently well. It is
clear from Figures 3.9a–b that for all network parameters the value VRR ≥ 1, which
confirms the claim.

All the observations discussed below concern SDHI.

Dependency of parameter bopt on the overflow level. Optimal value of
parameter b.

Proposition 2. The optimal parameter b is a non-decreasing function of the overflow
level N , i.e., bopt(N1) ≤ bopt(N2) for N1 ≤ N2.

In the experiments we checked a broader set of values for parameter b and none of
the cases violated Proposition 2.

Since parameter b in SDHI is not known a priori this observation allows us to
restrict possible choices of b for higher levels once for some lower level the optimal b
was found. Thus, one can use Algorithm 2 (below) for finding bopt(Ni) for a set of
ordered levels Ni (Ni < Ni+1) with i = 1, ...,m (we considered the case m = 3 and
N1 = 25, N2 = 50, N3 = 100).

Algorithm 2 Algorithm for choosing the optimal parameter b

1: i := 0
2: bopt(N0) := 0
3: RTV−1 := ∞
4: if i < m then
5: b := bopt(Ni)− 1
6: i := i + 1
7: repeat
8: b := b + 1
9: run the simulation for level Ni and parameter b at n cycles

(for n = 105, 4 · 105, 16 · 105, 64 · 105)
10: until RTV gets stable and RTV b > RTV b−1

11: bopt(Ni) := b
12: end if
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Figure 3.9: Comparison of SDHI and SDH performance
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Figure 3.10: ERE and IRE regions. Spreading of bopt over the network parameter
space

Proposition 3. 1) Level dependence: For the BRE region and the ERE region
with µ1 > µ2 the optimal value of b does not depend on level N ; for the IRE region
and the ERE region with µ1 = µ2, bopt is level-dependent;

2) Optimal value of parameter b:
BRE region: bopt = 0,
IRE region : bopt ≥ 3,
ERE region (µ1 > µ2): bopt = 2 for µ1 ≥ 0.5, and bopt ∈ {2, 3, 4}, otherwise,
ERE region (µ1 = µ2): bopt ∈ {4, 5}.

To show that bopt depends (or does not depend) on level N consider the difference
between values of bopt for consecutively considered levels, i.e., bopt(100)−bopt(50) and
bopt(50) − bopt(25). As one can see from Figure 3.11a, these differences are equal to
zero for µ1 − µ2 > 0, which means that bopt is the same for all levels (BRE region is
not shown since the differences are always zeros). For µ1 − µ2 = 0 they are non-zero
(equal to one), i.e., bopt changes with level N . For the IRE region (Figures 3.12a-b)
the differences are greater or equal to zero, and, thus, bopt is level-dependent.

To see how the values of bopt depend on the network parameters let us look at
Figures 3.13–3.14, where bopt is shown as a function of either µ1 − µ2 or µ1. As one
can see (Figure 3.13b) for the ERE region 2 ≤ bopt ≤ 5, with bopt = 2 for µ1 ≥ 0.5.
From Figure 3.13a, one can see that 2 ≤ bopt ≤ 4 for µ1 − µ2 > 0 and 4 ≤ bopt ≤ 5
for µ1 − µ2 = 0. For IRE region bopt is such that bopt ≥ 3 as can be clearly seen from
Figures 3.14a–b. Figure 3.10 shows how values of bopt are spread over the parameter
space (µ1, µ2).
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Propositions 2–3 in practice mean the following: to simulate a 2-node tandem
network, one needs, first, to determine to which region (BRE, ERE or IRE, see Fig-
ure 3.7) the chosen network belongs; then, simulate the network with new probability
distribution SDHI(b) with parameter b chosen according to Proposition 3.

Behavior of relative error

Proposition 4. For all network parameters (BRE, ERE and IRE regions) SDHI
gives estimates with bounded relative error if µ1 > µ2, and estimates with less than
linearly growing relative error if µ1 ≈ µ2.

To show that RE is bounded we calculated the ratios between consecutively considered
levels, i.e., RE 100/RE 50 and RE 50/RE 25 (referred in a sequel as RERs, which stands
for RE ratios). For a bounded RE those ratios should be near 1, i.e., RE does not
change when the level is doubled; for a linearly growing RE the ratios should be
near 2, i.e., RE grows proportionally to the level growth; for a quadratically growing
RE they would be near 4, i.e., RE grows quadratically with the level change. As one
can see from Figures 3.15–3.17 RERs ≈ 1 for µ1 − µ2 > 0.05 and RERs < 2 for all
µ1−µ2 ≈ 0, i.e., SDHI gives bounded RE for µ1−µ2 > 0, and less than linear growth
when µ1 − µ2 ≈ 0.

Thus, Proposition 4 tells us that if the value of b for simulating the new network
is chosen as b = bopt, the relative error of the resulting estimate will not increase (or,
will increase at most linearly) when the rare event decays exponentially fast.

Sensitivity of the heuristic (SDHI)

Now the natural question arises whether bopt is unique and what would happen if we
used an “almost optimal” b. In other words, is the value of b crucial for the heuristic
to work? Or, how sensitive is the heuristic for changing parameter b? According to
experimental results (not proven theoretically) when the number of simulation cycles
is large enough, bopt is uniquely determined (bopt corresponds to the minimal RTV ).
To demonstrate this, look at the Figures 3.18a–b, where (for some point) RTV is
shown as a function of b for different number of cycles. It is clear that bopt = 10 for
N = 50 and bopt = 15 for N = 100 since RTV ≈ const and takes the minimum value.
Note also that RTV is less unstable for b < bopt than for b > bopt.

Now, what would happen if the value of b is not the optimal, but is nearly optimal?
How crucially will it affect the performance of the heuristics? Proposition 5 answers
the question.

Proposition 5. If parameter b(N) for N = 50, 100 is chosen as b(N) = bopt(25) then
for the BRE region and the ERE region with µ1 > µ2 SDHI gives bounded3 RE;
for the ERE region with µ1 ≈ µ2 RE grows less than linearly;
for the IRE region RE grows less than linearly if µ1 > µ2 and less than quadratically
if µ1 ≈ µ2.

Indeed, as one can see from Figures 3.19–3.21, RERs ≤ 2 for ERE region with µ1 ≈ µ2

(Figure 3.19a) and for IRE region for µ1 > µ2 (Figures 3.20a); for IRE region with
µ1 ≈ µ2 RERs≤ 4, which supports the claim.

3According to Proposition 3, bopt does not depend on the level, i.e., b(N) = bopt(25) for all N > 0;
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Figure 3.15: ERE region. Ratios between RE s for consecutively considered levels
(N = 25, 50, 100) with b = bopt(N)
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Figure 3.16: IRE region. Ratios between RE s for consecutively considered levels
(N = 25, 50, 100) with b = bopt(N)
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Figure 3.17: Non-BRE region (i.e. ERE ∪ IRE). Ratios between RE s for
consecutively considered levels (N = 25, 50, 100) with b = bopt(N)
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Figure 3.18: Stability of RTV for different number of simulation cycles
λ = 0.253808, µ1 = µ2 = 0.373096
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Figure 3.21: Non-BRE region (i.e. ERE ∪ IRE). Ratios between RE s for
consecutively considered levels (N = 25, 50, 100) with b = bopt(25) for all N
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Thus, if one is interested in quick results rather than the best ones, the parameter b
for simulation can be chosen as bopt(25) (computer time spent on finding bopt(25) is
negligible) and use the same parameter b for finding probabilities for higher levels N .
Proposition 5 guarantees in this case that the relative error will still grow less than
linearly (or, quadratically, depending on the parameter region) when the probability
of interest decays exponentially fast.

3.6.2 Validation of SDHI for 3 and 4 queues
in tandem

This section is designed to demonstrate that SDHI, the change of measure proposed
in Section 3.3.2, yields estimates with bounded or less than linearly growing relative
error also in cases of 3 and 4 queues in tandem.

A set of experiments was made for different (and known to be more difficult)
network parameters (remember that we consider only the case of ordered queues):

1. 3 queues in tandem (around 80 points for each case):

a) µ1 = µ2 = µ3,

b) µ1 = µ2 > µ3,

c) µ1 > µ2 = µ3.

2. 4 queues in tandem (around 60 points for each case):

a) µ1 = µ2 = µ3 = µ4,

b) µ1 = µ2 = µ3 > µ4,

c) µ1 = µ2 > µ3 = µ4,

d) µ1 > µ2 = µ3 = µ4.

For each set of parameters the simulation was run for three overflow levels N (N = 25,
50 and 100) at 105, 4 · 105, 16 · 105 and 64 · 105 cycles. Observations that were made
based on the experimental results are discussed below.

Dependency of parameter bopt on the overflow level

First, let us give some remarks about the algorithm, proposed in Section 3.6.1 and
based on Proposition 2. For 2 queues in tandem it helped to restrict the amount of
candidates on bopt for higher levels once bopt was found for some lower level. Unfortu-
nately, in some cases of 3 and 4 queues in tandem, Proposition 2 was violated, thus,
for each level bopt had to be searched separately by consecutively trying all possibili-
ties starting, say, from b = 1. The counterpart of Proposition 3 for tandem networks
of 3 and 4 queues is stated below.

Proposition 6. For all network parameters of 3- and 4-node tandem networks the
optimal value of parameter b (bopt) depends on the overflow level N .

according to Proposition 4 SDHI gives bounded RE for bopt.
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That can be easily seen from Figures 3.22–3.23 where the differences in bopt between
consecutively considered levels (N = 25, 50 and 100) are represented, i.e., bopt(100)−
bopt(50) and bopt(50)−bopt(25). The fact that there are network parameters for which
these differences are non-zero confirms the statement.

Behavior of relative error

Proposition 7. 1) For a 3-node tandem network SDHI gives estimates with
bounded relative error for network parameters satisfying one of the following con-
dition: µ2 > µ3, or µ1 > 0.4, or µ1 − µ2 > 0.18,
and less than linearly growing relative error, otherwise.

2) For a 4-node tandem network SDHI gives estimates with less than linearly
growing relative error.

To show this, we again considered relative error ratios (RERs) between consecutively
considered levels, i.e., RE 100/RE 50 and RE 50/RE 25. For bounded relative error those
ratios should be near 1, for linearly growing relative error they should be near 2. As
one can see from Figures 3.24–3.25 (representing the results for a 3-node tandem
network) for all µ2 − µ3 > 0 those ratios are indeed near 1 and only for µ2 − µ3 = 0
they are larger but still less than 2, which confirms the first part of Proposition 7.
Figures 3.26–3.27 show that RERs for a 4-node network are mostly between 0.5 and
1.5 and the rest is less than 2, so the second part of Proposition 7 is also supported.

Guideline for choosing b

Note, that for a 2-node tandem network we have only one parameter b to choose (b2).
When the number of nodes in the network grows, we obtain more parameters, namely,
two for a 3-node network (b2 and b3) and three for 4-node network (b2, b3 and b4).
In general, they can be different, which makes finding the optimal values of bi more
complicated. However, as we show below, in most of the cases they can be chosen
the same. The proposition below summarizes the guideline for choosing the optimal
values of bi.

Proposition 8. 1) For a 3-node tandem network:
if µ1 > 1.5 · µ2, then b2 = ∞, b3 = b (to be found); otherwise b2 = b3 = b;

2) For a 4-node tandem network:
if µ1 > 1.5 · µ2 then b2 = ∞, b3 = b4 = b;
if µ2 > 1.5 · µ3 then b2 = b3 = ∞, b4 = b;
otherwise, b2 = b3 = b4 = b.

For the heuristics SDHs the equality bi = ∞ means that we do not “push” queue i.
For 4-node tandem networks b2 = ∞ and b3 = b4 = b means that we treat the last 3
queues as a 3-node tandem network. We do that only in cases where the service rate
at the first queue is large enough so that it does not influence the traffic stream much.
Apparently, by experiments, µ1 > 1.5 · µ2 was enough to satisfy this condition (for a
3-node tandem network it means that we treat the last two nodes as a 2-node tandem
network). The same was true when µ2 > 1.5 · µ3. In that case the first two queues
did not influence the stream, thus we could treat 4-node tandem network as a 2-node
network (b2 = b3 = ∞).
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Final remarks

Since for 3- and 4-node networks parameter b always depends on the level, and since
Proposition 2 does not have a counterpart for 3 and 4 queues in tandem we have not
investigated sensitivity of SDHI on parameter b.

3.7 Conclusion

In this chapter we developed two state-dependent heuristics for estimating population
overflow probabilities in tandem networks. Each of the heuristics is a set of changes
of measure, parametrized by b, the number of boundary levels for which the change
of measure depends on the system state. There exists an optimal value of b (bopt),
i.e., the one which gives estimates with smallest RTV . Depending on the network
parameters the heuristic parametrized by this value (denoted as SDHI(bopt)) gives
estimates with bounded or less than linearly growing relative error. For 2 queues in
tandem the parameter b was fully investigated by experiments and bopt was found for
all network parameters. For 3- and 4-node networks the optimal value of b has to be
found by trial and error.

Thus, we showed that the proposed heuristics are generally applicable for all net-
work parameters of 2-, 3- and 4-node tandem networks. We also compared our ap-
proach with the state-dependent adaptive method and showed that in most of the
cases our heuristics work better. It would be interesting to find the theoretical proof
of asymptotic efficiency of the developed heuristics and have a straightforward rule to
find the optimal value of parameter b (e.g., some dependence of bopt on the network
parameters λ, µ1,...,µd).
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Chapter 4

State-dependent heuristic for
queues in parallel

In this chapter we develop a state-dependent heuristic for simulating population over-
flow in networks of queues in parallel. No theoretical results are yet known to be
efficient for this case. The chapter is organized as follows. In Section 4.1 we describe
the model and notation. Sections 4.2.1 and 4.2.2 give, respectively, a motivation
and a time-reversal argument behind the proposed heuristic. The heuristic itself is
described in Section 4.3, whereas experimental results supporting the heuristic are
presented in Section 4.4. Final remarks and conclusions are discussed in Section 4.5.

4.1 Model and notation

Consider a network of d queues in parallel. Customers arrive to the network according
to the Poisson process with rate λ and are routed to queue i with probability pi > 0
with

∑d
i pi = 1. Let λi = λ · pi denote the arrival rate at node i and µi denote the

service rate at node i. We assume that the service times are exponentially distributed
and all nodes are stable, i.e., for all i (i = 1, . . . , d) the traffic intensity ρi satisfies

ρi =
λi

µi
< 1. (4.1)

Without loss of generality we assume that the rates are normalized, i.e.,

d∑

i=1

(λi + µi) = 1. (4.2)

Since the inter-arrival and service times are exponentially distributed and we are not
interested in any time dependent quantities, we simplify our model to the discrete
time Markov chain. Thus, let X = (x1, ..., xd) be the system state and S =

∑d
i=1 xi

be the total number of customers in the network. Again, we are interested in the
probability γ(N) that starting from the empty state X0 = (0, ..., 0) the network
population reaches level N before returning to X0.
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The arrival and service rates at node i under the proposed change of measure we
denote by λ̃i and µ̃i.

4.2 Preliminary discussion

In this section we will discuss the motivation and time-reversal argument behind the
heuristic proposed in this chapter.

4.2.1 Motivation of the heuristic

There are no theoretical results yet known to be efficient for all parameters of networks
of queues in parallel. The PW change of measure discussed in Section 2.4.2 is effective
only for a very limited set of network parameters, namely, when the load at the
bottleneck node is much larger than at the other nodes. In that case interchanging
the arrival rate with the bottleneck service rate provides efficient estimates. When
the service rates are equal or almost equal, this heuristic does not work at all and
there has not been reported any other heuristic that would help in that case. Recent
studies (e.g., [6], [13]) indicate that the “optimal” change of measure depends on the
system state and this dependence is strong along the boundaries (i.e., when one (or
more) of the nodes is empty). By knowing a change of measure on the boundaries and
in the interior of the state space one might be able to construct a change of measure
that approximates the optimal one over the entire state space. We already succeeded
to do that for tandem queuing networks in Chapter 3 and now do so for networks of
queues in parallel.

4.2.2 Time reversal argument

In this section, similar to what we have done for tandem networks, the time reversal
argument in [44] is applied to motivate the change of measure that we will introduce
in the next section. Again, it is not a formal proof of its asymptotic efficiency.

For networks of queues in parallel, the reverse time process (RTPr for short) is
even simpler than for tandem networks. Since all queues are independent the RTPr of
a network of d queues in parallel is a “combination” of d RTProcesses each of which
is an RTPr for a single node (which is a process with the arrival and service rates
interchanged, see Figure 4.1), i.e., it is a network of d nodes in parallel where all
arrival rates are interchanged with the corresponding service rates.

According to [38] the most likely path to the rare set in the forward time process
is, in the limit, i.e., as level N →∞, the same path by which the reverse time process
evolves, starting from the rare set. Since we do not know at which state exactly the
rare set is going to be hit we consider the general case, i.e., that it is hit at point
(n1, ..., nd) with

∑d
i=1 ni = N where N is a target level and all ni ≥ 0.

Consider the behavior of the RTPr for a single queue i (see Figure 4.1). Customers
arrive with the rate λi and are served at the rate µi. When ni is large enough, i.e.,
enough to make the server busy all the time and work at its full capacity, the output
rate from node i is equal to µi. Then, in the forward time process (FTPr for short)
the arrival rate at node i is equal to µi (remember that the output rates in the RTPr
are the input rates in the FTPr and vice versa). When queue i empties, i.e., ni = 0,
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Figure 4.1: Time reversal of a single queue

the output rate from queue i in the RTPr is equal to the input rate (λi). Thus, in
the FTPr we have the arrival rate at node i equal to λi and the service rate equal
to µi (since the sum of the arrival and service rates at node i is the same for the
FTPr and the RTPr and is equal to λi + µi, i.e., remains unchanged. Thus, for each
queue i in the network we have a changes of measure for ni À 0 such that λ̃i = µi,
µ̃i = λi, and no change of measure for ni = 0, i.e., λ̃i = λi, µ̃i = µi. This applies for
all i (i = 1, ..., d) since the queues are independent. In the following section we will
construct the state-dependent change of measure to simulate the population overflow
probability in the network of queues in parallel which is a combination of these two
changes of measure.

4.3 State-dependent heuristic

Denote by SDHi the 2 × 2 linear operator (matrix) transforming the original rates
into the new rates at node i (i = 1, . . . , d). As before, define [a]+ = max(a, 0) and
[a]1 = min(a, 1). Then the change of measure at node i (i = 1, . . . , d) is given by:

[
λ̃i

µ̃i

]
= SDHi

[
λi

µi

]
, (4.3)

SDHi =
[
bi − xi

bi

]+ [
1 0
0 1

]
+

[
xi

bi

]1 [
0 1
1 0

]
, (4.4)

µi(x1, ..., xd) = 0, for xi = 1, xj = 0 (i 6= j), (4.5)

where bi ≥ 1 (i = 1, . . . , d) is some integer number. The first matrix is the identity
matrix, corresponding to no change of measure. The second matrix is the identity
matrix with the first and the second rows interchanged, which corresponds to inter-
changing the arrival and service rates at node i. Note that the new rates remain to
be normalized.

The parameter bi in the above heuristic is the number of boundary levels for which
the change of measure at node i depends on its content xi. Proper selection of the bi’s
is crucial for achieving asymptotic efficiency. In general, the “optimal” bi’s (yielding
estimates with lowest variance) depend on the set of network parameters as well as
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the overflow level N . Empirical results (Section 4.4) suggest dependence on the traffic
intensities ρi’s at all network nodes.

According to the above change of measure, all nodes may be “pushed” (overloaded)
simultaneously, however, to different extent depending on their respective ratios of
content xi relative to bi. This is a state-dependent change of measure, by which empty
nodes are not “pushed” at all, and busy nodes are “pushed” harder for higher xi/bi.

Remark 4.3.1. The PW (state-independent) heuristic suggests interchanging the
arrival and the service rates at the bottleneck node (node with the highest ρi). For a
single node, say, node i, our change of measure, with bi = 1, is identical to PW.

4.4 Experimental results

The experiments in this section are designed to demonstrate that the state-dependent
change of measure proposed in Section 4.3 always yields asymptotically efficient es-
timates with less than linearly growing relative error. In Section 4.4.1 we consider
the performance of the proposed heuristic in comparison with other methods; in Sec-
tion 4.4.3 we experimentally verify its validity for all sets of network parameters.

4.4.1 Performance

In this section, similarly to what we have done in Section 3.5 for tandem networks,
we will present the comparison of the proposed heuristic (Section 4.3) with the PW
heuristic and the SDA algorithm (Section 2.5). All notation used in Section 3.4.1
apply here, as well as the restriction, discussed in Section 3.4.2.

All simulation experiments are gathered with the same number of replications,
namely, 106. The results are shown in Tables 4.1–4.9. For each estimate in these tables
we include the relative error (RE ) (in percent). For the purpose of comparing SDH
and SDA we also include VRR (relative to SDA). Hence, VRR > 1 implies efficiency
gain of SDH over SDA. Estimates obtained using the PW heuristic are also presented,
however, these are not necessarily accurate or stable. In general, numerical results
are difficult to obtain for larger and/or higher overflow levels. Whenever feasible,
numerical results (using the algorithm outlined in [32], [27]) are included to verify the
correctness of the simulation estimates. Otherwise, the corresponding table entry is
marked with an asterix (∗). In these cases, agreement of the SDH and SDA estimates
may be an indication of correctness.

We experimented with 2-, 3- and 4-node (symmetric and asymmetric) networks of
queues in parallel For each case network parameters are chosen in such a way that
the PW heuristic is not effective. Typically, this is the case for symmetric networks
of queues in parallel, i.e., all nodes have the same utilization, or when the higher
utilizations are sufficiently close to each other.

The experimental results are presented in Tables 4.1–4.3 for 2-node, in Tables 4.4–
4.6 for 3-node and in Tables 4.7–4.9 for 4-node networks of queues in parallel. For each
network we have two symmetric cases (with low and high loads) and one asymmetric
case (different loads and different routing probabilities).
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Results in Tables 4.1 and 4.3 show that unlike PW, SDH yields correct (compared
with numerical results), stable, and asymptotically efficient estimates with relative
error increasing (sub-)linearly in the overflow level N . Note that the best b1 and
b2 are equal only in the symmetric case. In the asymmetric case, b1 = 2, b2 > b1

and increases with the overflow level N . SDA produces correct and stable results as
well; however, it appears to be less efficient than SDH (as indicated by VRR ratios
significantly higher than one).

Experimental results in Tables 4.4 and 4.9 show that the PW heuristic can not be
applied to obtain reliable estimates. At the same time, SDH yields correct, stable,
and asymptotically efficient estimates with relative error increasing (sub-)linearly in
the overflow level N . The correctness can be assumed by the agreement with the
SDA estimates since numerical results are not feasible (except for level N = 25 for
3-node case). Again, the “best” bi (i = 1, ..., d) are equal only in the symmetric case.
In the asymmetric case, b1 = 2 and bi > b1 (for i ≥ 2) and increases with the overflow
level N .

Remark 4.4.1. It is noteworthy that for networks of queues in parallel (in comparison
to tandem) the performance gain of SDH over the SDA algorithm is much larger,
especially in cases of 3 and 4 nodes.

4.4.2 Sensitivity with respect to b

To check the sensitivity of SDH with respect to b, the experiments have been gathered
for different values of b for an example of a 2-node network. The results are represented
in Table 4.10. For different values of b around the “best” (marked by ‘*’ in the table),
the resulting estimate is displayed together with its relative error, estimated from
simulation and computed numerically (shown between parentheses, where the best
numerically computed RE is marked with ‘*’). The numerical RE is obtained from
an algorithm similar to that outlined in [25] but adapted to compute the variance
of the SDH estimator for an example of a network of 2 nodes in parallel. As one
can see from Table 4.10 the empirical relative error is consistent with the computed
relative error. One can also see that the accuracy of the simulation estimates is not
too sensitive with respect to b.

4.4.3 Validation

In this section we will experimentally demonstrate that the state-dependent heuristic
we proposed in Section 4.3 leads to asymptotically efficient estimates for all network
parameters. Note that in case of queues in parallel the freedom for choosing network
parameters is larger than for tandem networks, since there are more variables to
play with. For 2 queues in parallel there are four parameters: two arrival rates
and two service rates, but only three of them are independent due to normalization
Equation (4.2). For 4 queues in parallel the number of parameters is even larger (four
arrival and four service rates, i.e., seven independent parameters).

There are two possible cases of networks of queues in parallel: symmetric networks
(equal loads at all network nodes, i.e., ρi = λi/µi = ρj for all i, j), and asymmetric
networks (different loads). We made the experiments for both cases assuming for
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Figure 4.2: 2 parallel symmetric. Differences in bopt between consecutively
considered levels (N = 25, 50, 100)

simplicity that in the asymmetric case, loads of queues are ordered, i.e., ρi ≥ ρj for
i < j ≤ d (this is not a restriction since queues are independent).

The simulation was run for three overflow levels N (N = 25, 50 and 100) at 105,
4 · 105, 16 · 105 and 64 · 105 cycles. Several observations that were made based on the
experimental results are discussed below.

Dependency of parameter bopt on the overflow level

Proposition 9. For all network parameters of 2, 3 and 4 queues in parallel, the
optimal value of parameter b (bopt) depends on the overflow level N .

To see this, consider the difference between values bopt for levels 25, 50 and 100, i.e.,
bopt(100)−bopt(50) and bopt(50)−bopt(25). Non-zero difference means that bopt changes
with level N . As one can see from Figures 4.2–4.3, there are network parameters (not
all) with one of the differences being non-zero, which supports the claim.

Behavior of relative error

Proposition 10. For all network parameters of 2, 3 and 4 queues in parallel, the
heuristic proposed in Section 4.3 gives estimates with less than linearly growing relative
error.

To be able to see this, we considered the relative error ratios (RERs) between levels
N = 100 and N = 50, and between levels N = 50 and N = 25, i.e., RE 100/RE 50

and RE 50/RE 25 (see similar discussion in Section 3.6.1, Proposition 4). For bounded
RE these ratios should be near 1, for linearly growing RE they should be near 2.
RERs that are less than 2 indicate that RE grows less than linearly with level N .
Figures 4.4a–4.5a-b clearly show the validity of Proposition 10.
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Remark 4.4.2. Note that the fact that the RERs of level 100 to level 50 are higher
than RERs of level 50 to 25 does not contradict Proposition 10. To see that consider
the additional value of level N , namely, N = 200 and RE 200/RE100 (Figure 4.4a, the
case of 2-nodes in parallel). Although, RE 200/RE 100 > RE 100/RE50, i.e., the same
tendency continues, comparing RERs of RE 200/RE 50, RE 100/RE 25 (Figure 4.4b),
in which case the level was quadrupled and, hence, for the sublinear growth RERs
should be less than 4, one can clearly see that the sublinear growth property is actually
satisfied. Also, since RE 200/RE 50 < 4 and RE 50/RE 25 < 2 the ratio RE 200/RE 25 <
8 (as one can see from Figure 4.4b) and, for 3 and 4-node cases (Figure 4.5a–b), since
RE 100/RE 50 < 2 and RE 50/RE25 < 2 the ratio RE 100/RE25 will be less than 4.
Thus, Proposition 10 is supported.

Optimal value of parameter b

Proposition 11. For all network parameters of 2-, 3- and 4-node symmetric networks
of queues in parallel (i.e., ρi = ρ for all i ≤ d), the optimal value of parameter b grows
with the load ρ.

The validity of the proposition can be easily seen from Figures 4.6–4.7. The optimal
value of parameter bi (i = 1, ..., d) for symmetric networks of queues in parallel is the
same for each queue i and can be found with Algorithm 2 (Section 3.6.1).

Guideline for choosing b in case of asymmetric networks

Unlike the symmetric case the value bi,opt for asymmetric networks can be different
for each queue depending on how loaded the queue is. That makes it more time
consuming to find bi,opt by simply checking all the possibilities. In practice, however,
we saw that the number of possibilities could be restricted by considering only the
cases with bi ≤ bj for i < j, i.e., for a higher loaded node the value bopt is at most as
large as for the lower loaded nodes. (Remember that we consider the case when queues
are ordered by their loads.) This restriction, however, does not help much since the
number of possible combinations of bi,opt is still large and grows very quickly with the
number of nodes in the network.

From a practical point of view, it can be good enough to obtain not necessary
the optimal but just good estimates. So, we restrict ourselves to show that for given
parameters bi (i = 1, ..., d) the proposed heuristic (SDH) gives reliable estimates.
We experimented only with two different sets of parameters bi, namely,

1) all bi’s equal, i.e., b1 = b2 = ... = bd,

2) all but the first bi’s equal and b1 = 2 (remember that the first queue is the bottle-
neck), i.e., b1 = 2, b2 = ... = bd and bi > 2 for i ≥ 2.

The reason for this choice was that in most of the cases considering equal bi’s was
enough to obtain good estimates. In cases when it did not work we tried, for a couple
of examples, different values of bi’s. It happened that b1 needed to be smaller and the
optimal value of b1 was equal to 2. Then, for cases where choosing all bi’s equal was
not sufficiently good we tried b1 = 2 and it happened to work well, so we decided to
restrict ourselves to that case. The practical conclusion is formulated in the following
proposition.
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Proposition 12. For most of the network parameters of 2-, 3- and 4-node asymmetric
networks of queues in parallel, SDH for at least one of the cases 1)-2) gives estimates
with less than linear growth.

Figures 4.8–4.9 support the above proposition.

4.5 Conclusion

In this chapter we proposed the state-dependent heuristic to estimate the probability
of population overflow in networks of queues in parallel. We showed experimentally
that SDH gives asymptotically efficient estimates with less than linearly growing rel-
ative error. There was no other heuristic known to be efficient for all network param-
eters. We also compared our heuristic (SDH) with the heuristic obtained using the
adaptive technique (SDA) and showed that SDH has more advantages: it is quicker,
more straightforward and easier to implement, and it is also more efficient. Moreover,
its effectiveness does not diminish for larger networks. It is still an open question how
to find the optimal value of parameter b. We used trial and error, but there might be
an exact dependence of bopt on the network parameters. Investigating that would be
of much interest. Another open issue is the theoretical proof of asymptotic efficiency,
which can give better understanding of the system behavior and help to extend the
heuristic to non-Markovian networks of queues in parallel.



Chapter 5

State-dependent heuristics for
Jackson networks

In this chapter we develop a state-dependent change of measure for efficient simulation
of network overflow probabilities in general Jackson queuing networks. In Section 5.1
we introduce the model and notation; in Section 5.2 we describe the heuristic proposed
in [22] to simulate the probability of an arbitrary buffer overflow in a Jackson network.
This heuristic is used to derive our change of measure, described in Section 5.3, for
estimating total network overflow probability. In Section 5.4 we present experimental
results and discuss the performance of our heuristics in comparison with the SDA
algorithm and the PW state-independent heuristic. For feed-forward networks we do
an extensive experimentation and discuss the results in Section 5.5. We conclude in
Section 5.6.

5.1 Model and notation

Consider a Jackson network consisting of d nodes (queues), each having its own buffer
of infinite size. Customers arrive at node i (i = 1, . . . , d) according to a Poisson process
with rate λi. The service time of a customer at node i is exponentially distributed
with rate µi (= 1, . . . , d). Customers that leave node i join node j with probability
pij (i, j = 1, . . . , d) or leave the network with probability pie (i = 1, . . . , d). Without
loss of generality we assume that

d∑

i=1

(λi + µi) = 1. (5.1)

We also assume that the queuing network is stable, i.e., γi < µi for all i = 1, . . . , d,
where γi is the total arrival rate at node i, as determined from the traffic equations

γi = λi +
d∑

j=1

γj pji, i = 1, ..., d.
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Let xi,t (i = 1, . . . , d) denote the number of customers at node i at time t ≥ 0
(including those in service). Then the vector Xt = (x1,t, x2,t, ..., xd,t) is a Markov
process representing the state of the network at time t. Denote by St the total
number of customers in the network at time t, i.e., St =

∑d
i=1 xi,t. Since inter-arrival

and service times are exponentially distributed and we are not interested in quantities
dependent on time (e.g., waiting time) the model can be simplified to the discrete time
Markov chain. Namely, X = (x1, ..., xd) is the system state and S =

∑d
i=1 xi is the

total number of customers in the network, called the network population.
Assuming that the initial network state is X0 = (0, 0, ..., 0), corresponding to

an empty network, we are interested in the probability that the network population
reaches some high level N ∈ N before becoming empty. We denote this probability
by γ(N) and refer to it as the population overflow probability, starting from the initial
state X0. Since the associated event is typically rare, importance sampling may be
used to efficiently estimate this probability.

5.2 Buffer overflow at an arbitrary node

In this section we present an asymptotically efficient change of measure (as proposed
in [22]) to simulate buffer overflow probability at an arbitrary node. This change
of measure plays a key role in the heuristics proposed in this chapter. We need to
introduce some notation.

Consider a Jackson network as described in Section 5.1 and let all nodes in the
network be indexed by the set H. These nodes are further categorized by one (arbi-
trary) “target” node indexed by k and the remaining “feeder” nodes indexed by the
set F . Thus, H ≡ {k} ∪ F . In [22] a state-independent change of measure is pro-
posed to estimate the probability that the buffer content at the target node exceeds a
large level during its busy period (a busy period of the target queue is initiated when
an arrival to it finds it empty, and ends when the target queue re-empties). Under
this change of measure, the simulated queuing network is again a Jackson network
in which the original inter-arrival and service time distributions are exponentially
twisted to achieve asymptotic efficiency. Moreover, only the target node (node k) is
unstable while each of the other (feeder) nodes is either stable (in the set S = F − C)
or critical, i.e., an input rate is equal to an output rate (in the set C ⊆ F).

Let λ̃i, µ̃i, and p̃ij (i = 1, . . . , d and j = 1, . . . , d) be the new external arrival rates,
service rates, and routing probabilities, respectively. Also, define the constants ci ≥ 1
for i ∈ H, and let D ⊂ H denote the set {i : λi = 0}. The change of measure in [22]
is characterized as follows:

λ̃i = ciλi, i ∈ H, (5.2)

λ̃i = 0, i ∈ D. (5.3)

p̃ij =
cj

ci

µi

µ̃i
pij , i, j ∈ H, (5.4)

p̃ie =
1
ci

µi

µ̃i
pie, i ∈ H, (5.5)
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where the new service rates µ̃i and the unknown constants ci (i = 1, . . . , d) are
determined from the non-linear program given as follows:
Maximize ck subject to the following constraints:

∑

i∈H
(λ̃i + µ̃i) =

∑

i∈H
(λi + µi), (5.6)

∑

j∈H
p̃ij + p̃ie = 1, (5.7)

γ̃i = λ̃i +
∑

j∈F
p̃jiγ̃j + µ̃kp̃ki. (5.8)

The constants ci and the new service rates µ̃i are such that the feeder nodes under
the change of measure are either stable, i.e.,

µ̃i > γ̃i, i ∈ S, (5.9)

or, critical, i.e.,
µ̃i = γ̃i, i ∈ C. (5.10)

Equation (5.8) is the traffic equation for the system under the change of measure, and
(5.6) assures that the sum of all rates in the new system is equal to the sum of all
rates in the original system.

Under the restriction that the queue lengths at the feeder nodes are initially
bounded, the change of measure characterized above is proven to be asymptotically
efficient for estimating the probability of overflow at the target node (node k) during
its busy cycle (see [22]). In the sequel of this chapter we refer to it as the JNk change
of measure, where k is the index of the arbitrary (target) node in the network.

Remark 5.2.1. When the service rates at the feeder nodes are sufficiently large
(for example, when the target node has higher load than all its feeder nodes, see
Equation (5.11)) this change of measure can be determined explicitly (see [22] and
discussion below); when the target node is the bottleneck of the (whole) network this
change of measure is identical to PW ([15]) and the change of measure proposed in
[17] to simulate network population overflow.

Formally, let R = (rij : i, j ∈ H) equal (I − P )−1 (R is a d × d matrix). Since
the network is stable, rij is the expected number of visits to queue j by a customer
starting from queue i, before it leaves the system. Note that rik ≤ rkk. If, for each
i ∈ F , the service rates at the feeder nodes satisfy the inequality

µi > γi

(
1 +

rik

rkk

(
µk

γk
− 1

))
, (5.11)

then, the change of measure characterized above is determined explicitly as follows:

• all feeder nodes are stable, i.e., the set C is empty, and µ̃i = µi for i ∈ F , i.e.
the service rates of the feeder nodes do not change under change of measure and
are equal to the original service rates. The target node (node k) is unstable,
with

µ̃k =
(rkk − 1)µk + γk

rkk
. (5.12)
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Figure 5.1: 4-node feed-forward network

• for each i ∈ H,

ci = 1 +
rik

rkk

(
µk

γk
− 1

)
, (5.13)

λ̃i = ciλi, (5.14)

and
γ̃i = ciγi. (5.15)

• for i, j ∈ H,
p̃ij =

cj

ci

µi

µ̃i
pij , (5.16)

and
p̃ie =

1
ci

µi

µ̃i
pie. (5.17)

The above explicit change of measure can be applied for any network topologies
(including tandem, parallel, etc) and is asymptotically efficient to simulate overflow
at the bottleneck node. However, for simulating network population overflow it is not
always asymptotically efficient, as shown in [24], [25] for 2-node tandem networks; for
feed-forward and feedback topologies one can see that from the experiments presented
below (cf. Section 5.4).

5.3 State-dependent heuristics

In this section we present heuristic state-dependent probability measures to efficiently
simulate Jackson networks of feed-forward (Section 5.3.1) and feedback (Section 5.3.2,
one small case) topologies. In Section 5.3.3 we describe the generalization of the
heuristic for any feed forward network.

5.3.1 SDH for a feed-forward network

To describe our state-dependent heuristic for feed-forward Jackson networks, we
use the specific example depicted on Figure 5.1. The traffic intensity at node i is
ρi = γi/µi, where γi is the total arrival rate at node i (i = 1, 2, 3, 4). We also assume
that ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4, since in that case the inequality (5.11) holds and JNi can be
explicitly calculated for all i = 1, ..., 4 from Remark 5.2.1.



5.3 State-dependent heuristics 93

Basic idea

The basic idea behind the heuristic is very simple: in a given feed-forward network
we look at each subnetwork of nodes in parallel as one “big node”. The feed-forward
network then becomes a tandem network, for which we apply the heuristic from
Appendix A. We “push” each node depending on the number of customers in it. For
the “big node” we use the heuristic for queues in parallel from Section 4.3.

Remark 5.3.1. Note, that for a tandem network a fully state-dependent (Ap-
pendix A) and not a partly state-dependent (Section 3.3.1) heuristic is used. The
former has been developed in the context of feed-forward networks and has exper-
imentally shown better performance. At the same time, this fully state-dependent
heuristic applied to real tandem networks (with bi = b for i = 1, ..., d) did not im-
prove the performance compared to the already developed heuristics (Section 3.3.1).
See Appendix A for more detail.

Below we introduce the notation and apply the heuristic for the example of a
feed-forward network in Figure 5.1.

Notation

Let Θ be a vector with the arrival rate, the service rates at nodes 1, 2, 3, 4, and
the routing probability p (of going from node 1 to node 2), respectively, under the
original probability measure, i.e.,

• Θ = [λ, µ1, µ2, µ3, µ4, p] ,
i.e., the parameter vector corresponding to no change of measure.

The state-independent (and asymptotically efficient) change of measure to overflow
(only) node k in the feed-forward network is denoted by Θ̃k (k = 1, 2, 3, 4); it is
characterized in [22] and can be determined as described in Section 5.2. It follows
that

• Θ̃1 = [µ1, λ, µ2, µ3, µ4, p] ,
i.e., λ and µ1 interchanged to overflow node 1

• Θ̃2 = [µ2 + λ(1− p), µ1, λp, µ3, µ4, µ2/(µ2 + λ(1− p))] ,
i.e., λp and µ2 interchanged to overflow node 2

• Θ̃3 = [µ3 + λp, µ1, µ2, λ(1− p), µ4, λp/(λp + µ3)] ,
i.e., λ(1− p) and µ3 interchanged to overflow node 3

• Θ̃4 = [µ4, µ1, µ2, µ3, λ, p] ,
i.e., λ and µ4 interchanged to overflow node 4.

We also need to identify an asymptotically efficient change of measure which simulta-
neously overflows nodes 2 and 3, i.e., the parallel section in the feed-forward network
of Figure 5.1. This state-dependent change of measure was defined in Section 4.3. For
each node it is a combination of no change of measure and the PW change of measure,
depending on the number of customers at that node. To make the vector notation
similar to the one used above we leave out the dependence part (we include it into our
formula for feed-forward network) and denote by Θ̃23 the vector that simultaneously
overflows node 2 and 3 (cf. (4.3)–(4.4) with xi ≥ bi), i.e.,
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• Θ̃23 = [µ2 + µ3, µ1, λp, λ(1− p), µ4, µ2/(µ2 + µ3)] .

With the preceding definitions, a state-dependent change of measure for the feed-
forward network in Figure 5.1 can now be given.

SDH for a feed-forward network

Let Θ̃(x) =
[
λ̃, µ̃1, µ̃2, µ̃3, µ̃4, p̃

]
be a vector with the corresponding arrival and service

rates at the respective nodes as well as the routing probability under the new change
of measure to simulate network population overflow. Then,

Θ̃(x) =
[
x4

b4

]1

Θ̃4 +
[
b4 − x4

b4

]+

·
([

x2

b2

]1

·
[
x3

b3

]1

Θ̃23 +

+
[
x2

b2

]1

·
[
b3 − x3

b3

]+

Θ̃2 +
[
b2 − x2

b2

]+

·
[
x3

b3

]1

Θ̃3 +

+
[
b2 − x2

b2

]+

·
[
b3 − x3

b3

]+

·
{[

x1

b1

]1

Θ̃1 +
[
b1 − x1

b1

]+

Θ

})
,

(5.18)

µ̃4(0, 0, 0, 1) = 0. (5.19)

Note that all vectors on the right side of (5.18) are state-independent. The only
dependence is on a state (0,0,0,1) (Eq. (5.19)), which guarantees that all cycles hit
the overflow level N during the simulation. However, Θ̃(x), and so the new parameters
to simulate the network under importance sampling (λ̃(x), µ̃i(x), (i = 1, 2, 3, 4), and
p̃(x)) are state-dependent. Moreover, the equality

∑n
i=1 (λ̃i(x) + µ̃i(x)) = 1 still

holds under the above change of measure (except for the state (0,0,0,1) where they
still need to be normalized).

The above change of measure (5.18) is constructed as follows. In the feed-forward
network in Figure 5.1 we consider parallel nodes in the middle (node 2 and 3) as one
“big node”, called node 2-3 (see Figure 5.2). By doing so, our feed-forward network
becomes a 3-node tandem network (with nodes 1, 2-3 and 4), for which we use the
change of measure from Appendix A (see Remark 5.3.1). This change of measure
“pushes” each node when there are enough customers in it. Now we only need to
define how to “push” node 2-3. Since it was formed from nodes 2 and 3, two queues
in parallel, we can use our heuristic for queues in parallel. The only difference is that
for queues in parallel in case when all nodes are empty we use no change of measure.
In the current case of feed-forward network we have another node (node 1) in front
of nodes 2 and 3 (or, node 2-3), and we need to “push” it when both nodes 2 and 3
are empty.

Thus, we “push” node 4 if it has enough customers (x4 ≥ b4). Otherwise, if nodes
2 and 3 have enough customers, we “push” them together (Θ̃23), or, “push” node 2
(respectively, node 3) if it has enough customers, i.e., x2 ≥ b2 (respectively, x3 ≥ b3).
If both nodes 2 and 3 are empty, we “push” node 1 or use no change of measure
depending on x1.

According to the above change of measure, all nodes are overloaded simultaneously,
depending on their buffer contents. Since ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4, dependence on x4

supersedes dependence on x3 and x2 which supersedes dependence on x1.
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Figure 5.2: Defining a “big node”

The above change of measure implies that, upon arrival at an empty network,
node 1 is gradually overloaded according to [x1/b1]

1 Θ̃1, i.e., gradually interchange λ
and µ1 depending on x1. As x2 (resp. x3) increases, node 1 is gradually downloaded
while node 2 (resp. node 3) is gradually overloaded according to [x2/b2]

1 Θ̃2 (resp.
[x3/b3]

1 Θ̃3). As x4 increases, node 2 (resp. node 3) is gradually downloaded while
node 4 is gradually overloaded according to [x4/b4]

1 Θ̃4.
The effectiveness of the heuristic depends on the choice of the variables bi. In

general, bi can be different for each node i. However, as we show in the simulation
experiments (Section 5.4), if we set all bi’s in the heuristic equal to some b, the
resulting estimates, corresponding to the best b, seem quite stable, thus suggesting
robustness with respect to the choice of bi’s. This appears to imply that, either the
heuristic is sensitive to only one bi, and robust with respect to the other parameters,
or, the optimal values of bi are equal.

5.3.2 SDH for a feedback network

To describe a state-dependent heuristic for feedback Jackson networks, we use the
specific example depicted on Figure 5.3 (a similar feedback network was considered
in [46]). Without loss of generality we assume that

∑2
i=1 (λi + µi) = 1. The traffic

intensity at node i is ρi = γi/µi, where γi is the total arrival rate at node i (i = 1, 2).
We also assume that ρ1 ≤ ρ2.

To construct our heuristic for a feedback network we use similar logic as for a tan-
dem network, i.e., we “push” each node depending on the number of customers in it.
The more customers the node has, the more we “push” it. Again, the bottleneck node
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Figure 5.3: 2-node feedback network

is considered “more important”, so the dependence on the number of customers in it
supersedes the dependence on the number of customers in the non-bottleneck node.
Each node is “pushed” according to the change of measure described in Section 5.2
(and [22]).

Let us describe the heuristic formally. Let Θ = [λ1, λ2, µ1, µ2, p12, p21] be a vector
with the external arrival rates, the service rates at nodes 1 and 2, and the routing prob-
abilities, respectively, in the original network. For the feedback network in Figure 5.3,
denote by Θ̃i the (asymptotically efficient) state-independent change of measure to
simulate buffer overflow at node i (i = 1, 2), as determined from Section 5.2. Thus,

• Θ̃1 =
[
λ̃

[1]
1 , λ̃

[1]
2 , µ̃

[1]
1 , µ̃

[1]
2 , p̃

[1]
12 , p̃

[1]
21

]
,

• Θ̃2 =
[
λ̃

[2]
1 , λ̃

[2]
2 , µ̃

[2]
1 , µ̃

[2]
2 , p̃

[2]
12 , p̃

[2]
21

]
,

where λ̃
[k]
i , µ̃

[k]
i , p̃

[k]
ij (i, j = 1, 2) are defined from Equations (5.12)–(5.17) and k

(k = 1, 2) is a target node.
Let Θ̃(x) =

[
λ̃1, λ̃2, µ̃1, µ̃2, p̃12, p̃21

]
be a vector with the corresponding network

parameters under SDH to simulate population overflow in the feedback network de-
picted on Figure 5.3; it is given in the following heuristic.

The heuristic for a feedback network

Θ̃(x) =
[
x2

b2

]1

Θ̃2 +
[
b2 − x2

b2

]+
{[

x1

b1

]1

Θ̃1 +
[
b1 − x1

b1

]+

Θ

}
. (5.20)

p̃10(1, 0) = 0, (5.21)

p̃12(1, 0) = 1, (5.22)

p̃20(0, 1) = 0, (5.23)

p̃21(0, 1) = 1. (5.24)

The new network parameters (λ̃1, λ̃2, µ̃1, µ̃2, p̃12, p̃21) to be used in importance sam-
pling are state-dependent. Moreover, the equality

∑n
i=1 (λ̃i(x) + µ̃i(x)) = 1 still holds

under the above change of measure.
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In Equation (5.20) the probability measures Θ̃i (i = 1, 2) are state-independent
and nested in the order of traffic intensities at the respective nodes. Since ρ2 > ρ1, Θ̃2

is nested at the highest level, followed by Θ̃1, then Θ (no change of measure). The
nesting of Θ̃2 and Θ̃1 would be reversed if node 1 were the bottleneck. Descriptively:
if x2 ≥ b2, then only node 2 is fully overloaded. Otherwise, if x1 ≥ b1, then both node 1
and node 2 are overloaded depending on x2. When both x1 < b1 and x2 < b2, Θ̃(x) is a
combination, with corresponding coefficients, of two changes of measure (Θ̃1 and Θ̃2)
and no change of measure (Θ). Thus, starting from an empty network, as x1 increases,
we gradually overload node 1. As x2 increases, we gradually and proportionately
unload node 1 while overloading node 2. When the number of customers at node 2
is sufficiently large (x2 ≥ b), only node 2 is overloaded. Equations (5.21)–(5.24)
guarantee that all cycles reach the overflow level N during the simulation.

Here again, the effectiveness of the heuristic is influenced by the dependence
ranges, b1 and b2, which must be set appropriately. Experimental results in Sec-
tion 5.4.2 with b1 = 1 suggest robustness with respect to b2.

Remark 5.3.2. For the simple 2-node feedback network in Figure 5.3, the proposed
change of measure appears to be very effective (see Section 5.4.2). However, a straight-
forward generalization of it for larger feedback networks (with more than 2 nodes)
has not been tried and, thus, can not be guaranteed.

5.3.3 Possible generalization

Now we will describe how the heuristic proposed in Section 5.3.1 can be generalized for
some types (see description below) of feed-forward networks. A feed-forward network
is a queuing network when indices of queues can be chosen such that rij = 0 if j ≤ i,
i.e., node with lower index “feed” nodes with higher index (where rij are the elements
of the matrix R = (I − P )−1).

To describe the heuristic we need to formalize the definition of a “big node” used
in Section 5.3.1. Let H be the set of all nodes in the network. Suppose that all nodes
i ∈ H are indexed such that rij = 0 if j ≤ i. Let Fj denote the set of all direct feeder
nodes of node j (j = 1, .., d), i.e., pij > 0 for all i ∈ Fj . Suppose that for all l, m ∈ Fj

the probability plm = 0, i.e., the direct feeder nodes of node j “feed” only the node j
and not each other. Then, the subnetwork B ⊂ H of a feed-forward network is called
a “big node” if it is either a tandem network or a network of nodes in parallel such
that 1) no nodes can be added to keep this property, i.e., if B is a network of nodes
in tandem (resp., parallel) then for all i ∈ H−B the networks of nodes i∪B is not a
tandem (resp., parallel) network, 2) if B is a network of nodes in parallel, then there
exists i ∈ B and m ∈ Fi such that m ∈ Fj for all j ∈ B, i.e., there exists at least one
node that feeds all nodes in B.

Proposition 13. (Sufficient condition for generalization)
If the feed-forward network is constructed in such a way that after defining all “big
nodes” the network becomes a network of nodes in tandem or nodes in parallel than
the heuristic can be generalized.

The generalization is done recursively as follows. For the final network in which each
node is either a single node or a “big node”, we apply the corresponding heuristic for
nodes in tandem or parallel (Appendix A, or Section 4.3). Then, we unfold each “big
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Figure 5.4: An example of a network not satisfying Proposition 13

node” by applying the corresponding heuristic until all nodes become single nodes. In
the end we get a change of measure that is used to estimate the overflow probability
in the feed-forward network.

Note, that the generalization described above does not cover all possible types of
feed-forward networks. For example, the type of network depicted in Figure 5.4 is not
included, since node 1 feeds not only its direct nodes (2 and 3) but also a node after
them (node 4), so we can not separate a subnetwork of nodes in tandem or parallel.

We also do not have theoretical or empirical proof of its asymptotic efficiency since
it was tested only on small networks of up to four nodes. However, for all types that
were tested it worked very well (see experimental results below for some examples).

5.4 Experimental results

In this section we compare the performance of our heuristics with the PW and SDA
algorithms (Sections 5.4.1–5.4.2) for feed-forward and feedback networks, respectively.

5.4.1 Performance for a feed-forward network

In this section we present experimental results performed on the feed-forward network
depicted on Figure 5.1. All the experiments were made with 106 replications. We
consider four sets of feasible network parameters in the NAE region (this is verified
empirically by showing that the PW heuristic yields wrong or unstable estimates). For
consistency with the assumption made in Section 5.3.1, in the following experiments
we also choose the network parameters such that ρ1 ≤ ρ2 ≤ ρ3 ≤ ρ4.

For simplicity, in the following experiments, we set all bi’s equal to some b (see
Section 5.5.1 for more discussion). Each estimate displayed in Tables 5.1–5.4 is ob-
tained with the corresponding best setting of b (which, of course, may be different for
SDH and SDA).

The network parameters were chosen such that there are two cases where all loads
are different (Table 5.1–5.2), one case with loads in the middle equal (Table 5.3) and
one case with one of the loads in the middle equal to the bottleneck node (Table 5.4).

Experimental results in tables show that SDH (as described in Section 5.3.1)
works very well and yields stable estimates with small, and bounded relative errors.
Correctness is verified by agreement with SDA estimates, which are also accurate with
small and less than linearly growing relative errors.
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Estimates using PW do not always agree with those using SDH and SDA. In fact,
for an increasing number of replications (beyond 106 used in all simulation runs), PW
estimates eventually exhibit unstable behavior indicating a large variance.

VRR ratios of the SDA to SDH algorithms are mostly higher than one, imply-
ing that SDH is more efficient than SDA. Note, however, that we needed to use
some changes in our procedure of comparing the SDA and SDH algorithms (cf. Sec-
tion 3.4.2). Namely, for levels N = 50 and N = 100 we used the PW change of
measure as a starting point for the SDA algorithm (it helped to speed up the con-
vergence). We also increased the number of replications for the first iterations of
the SDA algorithm, namely, 5 · 105 instead of 105 as this was done previously (cf.
Section 3.4.2), otherwise, the SDA algorithm did not converge. Only for N = 100 in
Table 5.3 SDA converged already with 105 replications and gave better results than
with 5 · 105 replications, so we used that. This also might explain why VRR dropped
to less than one in this case.

In Table 5.2 VRR for N = 50 and N = 100 is also less than one, meaning that
SDA is better for this case than SDH. Note, however, that this case is also a bit
different, namely, SDA showed very good convergence (it converged already with 105

replications and without using PW as starting point).
On the contrary, in Table 5.4 VRR for N = 50 and N = 100 increased by order 10

compared with N = 25 making the SDH algorithm for this example far more efficient
than the SDA algorithm. Since RE ’s for the SDH and SDA algorithms for levels
N = 50 and N = 100 are very close, this bad performance of SDA can be a result
of its convergence problems. Some smoothing techniques which are known to help
in other cases might help here (for more information about smoothing techniques
see [32] and [14]). This shows, however, how much the performance of SDA algorithm
depends on its convergence properties.

In the end, one can conclude that if the SDA algorithm shows signs of good
convergence, it might work better than SDH. Otherwise (in most of the cases), the
SDH algorithm is (sometimes by far) more efficient.

5.4.2 Performance for a feedback network

In this section we present experimental results performed on the feedback network
depicted in Figure 5.3. As before, for all the experiments we used the same number
of replications, namely, 106. The PW heuristic in [15] may be asymptotically efficient
(AE) only in some regions of the feasible parameter space; it is not asymptotically
efficient (NAE) in other regions. These AE/NAE regions have not yet been formally
characterized. However, the asymptotic efficiency of PW can be empirically tested
for any arbitrary point in the parameter space. For the same network in Figure 5.3,
in [46] a small region of the feasible parameter space is identified as NAE, i.e., a subset
in which PW is provably asymptotically inefficient.

In the following experiments, we consider two sets of feasible network parameters.
One of them is in the provably NAE region (Table 5.5), another one is in experimen-
tally (not proven) NAE region (Table 5.6). To be consistent with the assumption
made in Section 5.3.2, we also choose the network parameters such that ρ1 ≤ ρ2.
For SDH, we set b1 = 1 and b2 = b. Each SDH and SDA estimate displayed in the
tables is obtained with the corresponding best setting of b (which, of course, may be
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different for SDH and SDA).
Two types of network parameters were chosen: a network with low loads (Ta-

ble 5.5) and a network with high loads (Tables 5.6). Experimental results in Ta-
bles 5.5 and 5.6 show that whereas PW gives incorrect estimates, SDH yields correct
and asymptotically efficient estimates with bounded relative error.

Note, that SDH is more efficient for one case (Table 5.6, VRR > 1) and less efficient
for another (Table 5.5, VRR < 1). It can be explained by very good convergence of
SDA for the network in Table 5.5, so the RE ’s are about 20 times as small as for
SDH. However, for another example (Table 5.6), despite the fact that RE of SDA
for level N = 25 is smaller than RE of SDH, the variance reduction ratio VRR > 1,
which shows that SDH is more efficient than SDA. The efficiency gain also grows with
the overflow level N , since RE of SDA grows linearly with N and RE of SDH stays
bounded. Thus, it is impossible to predict which algorithm (SDH or SDA) will work
better, all depends on the specific parameter settings and convergence of SDA. If it
converges good it might work better than SDH, otherwise, SDH is better.

Sensitivity with respect to b

In Table 5.6 the results for different values of b are presented to show the sensitivity
of SDH for a feedback network with respect to b. For different values of b around
the “best” (marked by an ‘*’ in the table), we display the resulting estimate along
with its relative error, estimated from simulation and computed numerically (shown
between parentheses, where the best numerically computed RE is marked with ‘*’).
The numerical RE is obtained from an algorithm similar to that outlined in [25] but
adapted to compute the variance of the SDH estimator for the above feedback network
example. The empirical relative error is consistent with the relative error calculated
numerically.

It is interesting to note that the accuracy of the simulation estimates is not too
sensitive with respect to b. This can also be concluded from the computed relative
errors. Moreover, both empirical and numerical results suggest bounded relative error
of the SDH estimator.

The feedback network example considered is relatively small, yet it helps to illus-
trate that our approach may indeed be useful where no other heuristics are known
to be effective. However, the heuristic has not been checked extensively for different
parameters settings, hence, its effectiveness can not be guaranteed for other network
parameters.
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5.5 Extensive experimental results

In this section we check the heuristic for the feed-forward network with 4 nodes (as
depicted in Figure 5.1) by experiments for many different parameter settings. We show
that for most of the network parameters our heuristic gives bounded RE . We also
show that there are, however, some cases for which the heuristic is not asymptotically
efficient. This is a so called completely symmetric case, i.e., when loads at all network
nodes are equal and outgoing probabilities from node 1 to node 2 and from node 1 to
node 3 are the same (i.e., ρi = ρ for i = 1, ..4, p = 0.5).

The statistics were gathered for three different levels, namely, N = 25, 50 and 100
with 106, 4 ·106, 16 ·106 and 64 ·106 replications (similar to what was done for queues
in tandem and in parallel, Sections 3.6 and 4.4.3). There were about 130 different
settings of network parameters checked. Around 30 points for a completely symmetric
case (as a most difficult one) and around 100 points randomly chosen (according to
uniform distribution) from all possible network parameters. Below we discuss the
observations that were made based on the experimental results.

First, we talk about sensitivity of the heuristic with respect to bi (Section 5.5.1).
Then, we discuss the behavior of relative error (Section 5.5.2) and dependency of bopt

on the overflow level (Section 5.5.3). At the end we give a guideline for finding bopt

(Section 5.5.4).

5.5.1 Sensitivity with respect to bi

In general, the optimal values of bi can be different for all i = 1, .., d. Even if we assume
that bi ≤ L the number of all possibilities grows very quickly with the number of nodes
in the network (it is of order Nd). In all our experiments we restrict ourselves to the
case bi = b for all i = 1, .., d. We show that even with equal bi’s the proposed heuristic
gives reliable estimates. We also show that, in general, the estimation results can be
improved if we allow bi’s to be different.

Let us consider the case b1 = ∞ (as an extreme example) and compare RTV ’s
(cf. (3.29)) of the heuristic with equal bi’s (bi = b = bopt for i = 1, .., 4) and b1 = ∞,
bi = b = bopt for i = 2, 3, 4 (note, that bopt for cases b1 = ∞ and b1 = bi might
be different). Since the simulation time was almost equal for both of the cases we
calculate VRR (cf. 3.30) as a squared ratio of RE ’s, i.e., VRR=(RE b1=b/RE b1=∞)2.
Figures 5.5a–b show VRR results. VRR values greater than one mean that the
heuristic with b1 = ∞ is better.

From the figures one can see that when the ratio ρ4/ρ1 ≥ 5 the heuristic with
b1 = ∞ “works” better. That can be easily explained. The boundaries bi in the
heuristic indicate how much the change of measure depends on the number of cus-
tomers at node i. The value bi = 1, for example, means that the heuristic is very
dependent on the content of node i (so we “push” it as soon as there is one customer
there) and the value b1 = ∞ means that we do not “push” this node (the heuristic
does not depend on the number of customers there). Figures 5.5a–b show that as
soon as the load at the bottleneck node (node 4) is five times larger than the load at
node 1 (ρ4/ρ1 ≥ 5) it is almost always more efficient not to “push” node 1, i.e., use
b1 = ∞.
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Figure 5.5: 4-node feed-forward network. Performance comparison of the heuristic
with b1 = b and b1 = ∞



106 Ch. 5 State-dependent heuristics for Jackson networks

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

ρ
4
/ρ

3

R
ER

s

RE
50

/RE
25

RE
100

/RE
50(a) Non-equal ρ’s, equal bi’s

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

ρ
4
/ρ

3

R
ER

s

RE
50

/RE
25

RE
100

/RE
50(b) Non-equal ρ’s, equal bi’s (zoomed in)

Figure 5.6: 4-node feed-forward network. Ratios between RE s for consecutively
considered levels (N = 25, 50, 100)
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Figure 5.7: 4-node feed-forward network. Ratios between RE s for consecutively
considered levels (N = 25, 50, 100)
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Despite this fact in all the experiments we set bi = b and try to find b = bopt, the
value b that minimizes the variance of the estimator. This was done for simplicity and
because the heuristic was working even with equal bi’s. Moreover, it showed the same
type of behavior (see Figures 5.6–5.7). All the conclusions made below correspond to
the case bi = bopt for i = 1, .., 4.

5.5.2 Behavior of relative error

Proposition 14. For all network parameters of the 4-node feed-forward network
depicted in Figure 5.1 satisfying the condition ρ4 > ρ3, the heuristic proposed in
Section 5.3.1 gives estimates with bounded RE;
for network parameters with equal loads (ρ1 = ρ3 = ρ3 = ρ4) the proposed heuristic
might give estimates with bounded or less than linearly growing RE; however, for most
of the case it is not asymptotically efficient.

To see that, let us consider the relative error ratios (RERs) between levels N =
100 and N = 50, and between levels N = 50 and N = 25, i.e., RE 100/RE 50 and
RE 50/RE 25 (see similar discussion in Section 3.6.1, Proposition 4). These ratios
should be near 1 for bounded RE . RERs that are less than 2 indicate that RE grows
less than linearly with level N . As one can see from Figures 5.6a-b the RERs are very
close to one for all network parameters with ρ4/ρ3 > 1. In case ρ4/ρ3 = 1, i.e., when
the load at the bottleneck node (the last node in the feed-forward network) is equal to
the load at the second bottleneck node (one of the nodes in the middle), these ratios
are closer to 2, suggesting linearly growing RE .

In Figures 5.8a–b the RERs for network parameters with equal loads are depicted.
One can clearly see that the heuristic works not as well as for the non-symmetric case
(RERs are very often greater than one). Nevertheless, there are network parameters
for which the heuristic gives bounded RE (3 out of 36 checked points), or less than
linearly growing RE (3 out of 36 checked points), see Figure 5.8b. Unfortunately, we
were not able to specify exactly, or, numerically, the regions of bounded or linearly
growing RE .

5.5.3 Dependence of bopt on the overflow level

In this section we consider the dependence of bopt on the overflow level. We sup-
pose that bopt is already known (the guideline to find bopt is described in the next
Section, Proposition 16). The conclusions are made only for the case of non-equal
loads, since according to Proposition 14 in this case the heuristic is (experimentally)
asymptotically efficient.

Proposition 15. Consider the 4-node feed-forward network depicted in Figure 5.1.
Suppose that all network parameters satisfy the condition that at least one of the
inequalities ρ4 ≥ ρ3 ≥ ρ2 ≥ ρ1 is strict, i.e., ρ4 > ρ1 (not all loads are equal). Then,
if the last node is a strong bottleneck (ρ4 ≥ 10 · ρ3) then bopt does not depend on the
overflow level N ;
otherwise, bopt can change with the level N .

To see this we consider the difference between values bopt for levels 25, 50 and
100, i.e., bopt(100) − bopt(50) and bopt(50) − bopt(25). From Figures 5.9a–b one can



5.5 Extensive experimental results 109

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

ρ
i

R
ER

s

RE
50

/RE
25

RE
100

/RE
50(a) Equal ρ’s. All checked parameter values

0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

ρ
1

R
ER

s

RE
50

/RE
25

RE
100

/RE
50(b) Equal ρ’s. Points with bounded and less than linearlygrowing RE

Figure 5.8: 4-node feed-forward network. Ratios between RE s for consecutively
considered levels (N = 25, 50, 100)



110 Ch. 5 State-dependent heuristics for Jackson networks

0 10 20 30 40 50
−3

−2

−1

0

1

2

3

ρ
4
/ρ

3

b
50

−b
25

b
100

−b
50(a) Non-equal ρ’s, equal bi’s

2 4 6 8 10
−3

−2

−1

0

1

2

3

ρ
4
/ρ

3

b
50

−b
25

b
100

−b
50(b) Non-equal ρ’s, equal bi’s (zoomed in)

Figure 5.9: 4-node feed-forward network. Differences in bopt between consecutively
considered levels (N =25, 50, 100)



5.5 Extensive experimental results 111

0 10 20 30 40 50
0

5

10

15

20

ρ
4
/ρ

3

b op
t(2

5)

(a) Non-equal ρ’s, equal bi’s

0 2 4 6 8
0

5

10

15

20

ρ
4
/ρ

3

b op
t(2

5)

(b) Non-equal ρ’s, equal bi’s (zoomed in)
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see that these differences are equal to zero for ρ4/ρ3 ≥ 10 meaning that bopt does
not changes with level N . For ρ4/ρ3 < 10 these differences can be non-zero, i.e., bopt

can change with level N . However, when 2 ≤ ρ4/ρ3 < 10 these differences are very
small (between -1 and 1), i.e., bopt almost does not change with level N . This makes
it easier to find bopt for higher levels (as N = 50 or 100) once we know bopt for some
low level (as N = 25). One needs to check only three values: bopt(25) − 1, bopt(25)
and bopt(25) + 1. Note, however, that we have not experimented with levels higher
than N = 100, so these differences might be larger.

5.5.4 Guideline for finding bopt

In this section we will discuss how to find bopt for level 25. Using this knowledge and
Proposition 15 one can find bopt for higher levels.

Proposition 16. Consider the feed-forward network depicted in Figure 5.1. If the
last node is a strong bottleneck (ρ4/ρ3 ≥ 10) then bopt(25) = 3;
if ρ4/ρ3 ∈ [4, 10) then bopt(25) ∈ [3, 4];
if ρ4/ρ3 ∈ [2, 4) then bopt(25) ∈ [2, 6];
if ρ4/ρ3 ∈ [1, 2) then bopt(25) ≥ 2;

Figure 5.10 shows how b25 depends on the network parameters. One can clearly see
that the Proposition 16 is satisfied.

5.6 Conclusion

In this chapter we have proposed and experimented with the heuristic changes of
measure to estimate the probability of population overflow in feed-forward and feed-
back networks. Extensive experimental results indicate that for most of the cases the
heuristics yield asymptotically efficient estimates, with relative error growing at most
linearly with the overflow level. The efficiency of the obtained changes of measure
compares well with those determined using adaptive importance sampling method-
ologies: the heuristics are simpler to apply and in most of the cases are more efficient.

In this chapter a possible generalization of the heuristic for specific types of feed-
forward networks was also proposed. It is still an open question, however, how it
can be generalized to any Jackson network. That would be a very interesting topic
for further research. Another interesting question is a formal proof of asymptotic
efficiency. Also, a theoretical dependency of a number of boundary layers on the
network parameters is another challenge that needs to be addressed.



Chapter 6

Exploring further

In the previous chapters we have proposed state-dependent heuristics to simulate
population overflow in different types of Markovian queuing networks. For most of the
cases we could conclude, based on extensive experimentation, that the heuristics were
asymptotically efficient. Such a good performance, in return, triggers two questions.
First, can the experimentally shown efficiency be theoretically proven? Second, can
these heuristics be applied for non-Markovian networks?

In this chapter we address both of these issues. In Section 6.1 we discuss directions
to prove asymptotic efficiency of the changes of measure presented in Chapter 3. In
Section 6.2 we present extension of the heuristics proposed for a 2-node tandem Jack-
son queuing network (Chapter 3, Appendix A) to non-Markovian queuing networks.

6.1 A proof of asymptotic efficiency?

In this Section we look in more detail whether the proof approaches in [7] and [47]
for different change of measure for a 2-node tandem network can be applied in our
case. In Section 6.1.1 we discuss the main ideas from [7] and [47]. In Section 6.1.2 we
show that the reverse version of the arguments in [7] can not be applied for our case.
In Section 6.1.3 by falling short to use the approach from [47], some understanding
in the behavior of the changes of measure is gained.

6.1.1 Related work

In a recent paper [7] a first attempt of constructing a provably asymptotically efficient
change of measure for a 2-node tandem network has been presented. This change
of measure (for a 2-node tandem Markovian queuing network) is constructed based
on game theory results. Instead of minimizing the second moment (necessary for
asymptotic efficiency), the authors propose to look at the problem of finding a change
of measure as a stochastic control problem. Using the corresponding theory, they write
down the Dynamic Programming Equation (DPE), the solution of which (through its
gradient) defines the zero-variance (thus, asymptotically efficient) change of measure.
The authors find the solution approximately and show that the approximation is good
enough to give an asymptotically efficient change of measure. The proof, however,
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is very complicated and includes a lot of new notation. In [47] the same change
of measure was looked at from a different point of view and a simpler proof was
presented.

Below we discuss if the results in [7] and [47] can be used to prove asymptotic
efficiency of our changes of measure from Sections 3.2.3–3.2.4.

6.1.2 First approach for a proof

We aim for proving asymptotic efficiency of our changes of measure for a 2-node
tandem network (Chapter 3). Our first attempt is to use the same approach as in [7].
However, it is not clear whether in our case the same type of arguments can be applied.
The problem is that in [7] the change of measure (at each state) is constructed from
the gradient of an approximate solution, some function W (x1, x2) on a state space,
of the so-called DPE. Thus, it is found. In our case, we already have a change of
measure for each state (constructed using some heuristic arguments) and we would
like to show its asymptotic efficiency. We show below that such a function W (x1, x2)
can not be constructed, and, thus, this approach can not be used to prove asymptotic
efficiency of our heuristics.

Let (x1, x2) denote a system state and (λ, µ1, µ2) denote, respectively, the arrival
rate to node 1 and the service rates at nodes 1 and 2. Let p = (p1, p2) be a vector in R.
In [7] the change of measure for estimating the total network overflow probability in
a 2-node tandem queuing network is defined through some function W (x1, x2) on the
state space as follows. 




λ̃ = λe−p1/2 ·N(p),

µ̃1 = µ1e
(p1−p2)/2 ·N(p),

µ̃2 = µ2e
p2/2 ·N(p),

(6.1)

where

N(p) =
1

λe−p1/2 + µ1e(p1−p2)/2 + µ2ep2/2
, (6.2)

and p = (p1, p2) = (∂W/∂x1, ∂W/∂x2).
We will follow the construction in [7] in the other direction as follows. For our

changes of measure we use Equation (6.1) (Proposition 3.4 in [7], or, Equation 7
in [47]) to find a vector p. Then, the problem is to find a function W (x1, x2), such
that its gradient is equal to p and that satisfies the same conditions as mentioned
in [7]. We show below that such a function does not exist.

Let us consider simplified versions, namely, without condition µ̃2(0, 1) = 0, of
SDH and SDHI changes of measure for a 2-node tandem network (Sections 3.2.3–
3.2.4). Then, using Equation (6.1) one can find that the corresponding derivatives
look as follows. For the simplified SDH change of measure, we have

∂W

∂x1
=

2
3

ln


 λ2

µ1µ2
·

(
µ2 + (λ− µ2) ·

[
x2
b

]+)
·
(
λ + (µ1 − λ) · [x2

b

]+)

(
µ1 + (µ2 − µ1) ·

[
x2
b

]+)2


 , (6.3)
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∂x2
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ln
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2
·

(
µ2 + (λ− µ2) ·

[
x2
b

]+)2

(
λ + (µ1 − λ) · [x2

b

]+)
·
(
µ1 + (µ2 − µ1) ·

[
x2
b

]+)


 , (6.4)

and for the simplified SDHI change of measure, we have

∂W

∂x1
=

2
3

ln


 λ2

µ1µ2
·

(
µ1 + (λ− µ1) ·

[
x2
b

]+)
·
(
λ + (µ1 − λ) · [x2

b

]+)

µ2
2


 , (6.5)

∂W

∂x2
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ln


λµ1

µ2
2
·

(
µ1 + (λ− µ1) ·

[
x2
b

]+)2

µ2

(
λ + (µ1 − λ) · [x2

b

]+)


 . (6.6)

Integrating (6.3) (respectively, (6.5) for the SDHI change of measure) with respect
to x1 we obtain

W (x1, x2) =
∂W

∂x1
· x1 + C2(x2) = F1(x2) · x1 + C2(x2), (6.7)

and integrating (6.4) (respectively, (6.6)) with respect to x2 we obtain

W (x1, x2) =
∫ N

0

∂W

∂x2
dx2 + C1(x1) = F2(x2) + C1(x1), (6.8)

where the functions C1(x1) and C2(x2) are yet unknown. Thus, the following equality
should be true for all x1, x2 ≥ 0

F1(x2) · x1 + C2(x2) = F2(x2) + C1(x1). (6.9)

This is possible only if F1(x2) = const for all x2 ≥ 0. In our case F1(x2) = const
only for x2 = 0 and x2 ≥ b, since F1(x2) = ∂W/∂x1 and it does depend on x2 for
0 < x2 < b (cf., (6.3), (6.5)).

Thus, a suitable function W (x1, x2) can not be constructed (even for simplified
versions of our changes of measure) and, hence, the approach to follow a reverse
version of the argument in [7] can not be used to prove asymptotic efficiency of our
heuristics.

6.1.3 Second approach for a proof

A second approach could be to follow the proof in [47], which is an alternative to
the proof in [7] for the same change of measure for a 2-node tandem network. The
authors of [47] looked at the likelihood ratio of a sample path under the new change
of measure and showed that it depends only on the initial and final points and is
“largely independent” of the exact shape of the path. This means, for example, that
it is almost independent of cycles, and, hence, the likelihood ratio of any cycle is equal
to one, or, is approximately equal to one.

Let us consider the behavior of likelihood ratios of SDH, SDHI (Sections 3.2.3–
3.2.4) and PW [15] changes of measure (the latter does not have anything to do with
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Figure 6.1: Cycles C1 and C2

our proof attempt and is here only to show the difference in behavior of likelihood
ratios of “good working” (SDH and SDHI) and “not always working” (PW) changes
of measure).

We want to see whether likelihood ratios of our changes of measure are nearly
equal to one. If they are, then we can, otherwise, we can not use the approach in [47]
to prove asymptotic efficiency of SDH and SDHI changes of measure.

Below we show that likelihood ratios of cycles for the SDH and SDHI changes of
measure are not always equal to one and they do not go to one in the limit when
overflow level N →∞. Hence, the approach in [47] can not be used to prove asymp-
totic efficiency of our changes of measure. The observations are, however, useful in
understanding the efficiency of our changes of measure.

Behavior of likelihood ratios for cycles

Observation 1. For both the SDH and SDHI changes of measure, any cycle that goes
only through states with at least b customers at node 2, i.e., x2 ≥ b, has a likelihood
ratio equal to 1.

This is always true for PW change of measure for cycles that do not touch the bound-
ary x2 = 0, since the PW rates are state-independent and are equal to µ2, µ1 and λ
(respectively, for the arrival rate, the service rate at node 1 and the service rate at
node 2). Any cycle of length 3 · c has c arrivals, c departures from node 2 and c
departures from node 2. Hence,

LRPW =
(

λ

µ2

µ1

µ1

µ2

λ

)c

= 1. (6.10)

Our SDH and SDHI changes of measure are equal to PW for x2 ≥ b. Thus, cycles
that go only through states with x2 ≥ b do not influence the likelihood ratio of a
path.

Observation 2. For the SDH change of measure, every cycle of length three that
touches the boundary x2 = 0 has likelihood ratio larger than 1.

Let us consider cycles of length three. There are only two types of them, namely,
cycle C1: (x1, 1) → (x1 + 1, 1) → (x1 + 1, 0) → (x1, 1) and
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cycle C2: (x1, 1) → (x1, 0) → (x1 + 1, 0) → (x1, 1) (Figure 6.1). The corresponding
SDH likelihood ratios are equal to

LRSDH
C1

=
λµ2

µ1
λ+µ1(

µ1 + µ2−µ1
b

) (
µ2 + λ−µ2

b

)
λ

µ1+λ

=
µ1µ2(

µ1 + µ2−µ1
b

) (
µ2 + λ−µ2

b

) > 1,

(6.11)
and

LRSDH
C2

=
µ2

λ
λ+µ1

µ1
λ+µ1

(µ2 + λ−µ2
b ) µ1

µ1+λ
λ

µ1+λ

=
µ2

µ2 + λ−µ2
b

> 1. (6.12)

Remember, that, as before, we consider only the case µ2 ≤ µ1 (Remark 3.5.1).
The difference with the PW change of measure (which shows good performance

only for some network parameters) is that for PW every cycle (not only cycles of
length three) that touches the boundary x2 = 0 has a likelihood ratio larger than 1,
i.e.,

LRPW =
µ2 + µ1

λ + µ1
> 1, (6.13)

for all cycles that touch the boundary x2 = 0.
If the number of those cycles is significant, the final estimate can have a large vari-

ance. For SDH, only cycles of length three that touch the boundary have a likelihood
ratio larger than one. Hence, the probability of those cycles to be in a path is smaller.
This explains why the SDH change of measure shows much better performance than
the PW change of measure.

Still, this observation shows that the likelihood ratio of a path for the SDH change
of measure does depend on cycles of length three that touch the boundary x2 = 0.
This can dramatically influence the likelihood ratio of the path. In principle, it can
go to infinity if the path goes an infinite number of times through this type of cycles.

Observation 3. For the SDHI change of measure, cycles of length three that touch
the boundary x2 = 0 have likelihood ratios either smaller or larger than 1, depending
on the cycle type and b value.

Namely, for cycle C1:

LRSDHI
C1

=
λµ2

µ1
λ+µ1

µ2

(
µ1 + λ−µ1

b

)
λ

µ2+λ

=
µ1(λ + µ2)(

µ1 + λ−µ1
b

)
(λ + µ1)

, (6.14)

and 



LRSDHI
C1

= 1 for bC1 =
λ2 − µ1

2

µ1(µ2 − µ1)
,

LRSDHI
C1

< 1 for b ∈ (bC1 ,∞) ,

LRSDHI
C1

> 1 for b ∈ (0, bC1) .

(6.15)

For cycle C2:

LRSDHI
C2

=
µ2

λ
λ+µ1

µ1
λ+µ1

(µ1 + λ−µ1
b ) µ2

µ2+λ
λ

µ2+λ

=
µ1(λ + µ2)2

(µ1 + λ−µ1
b )(λ + µ1)2

, (6.16)
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and 



LRSDHI
C2

= 1 for bC2 =
(λ2 − µ1

2)(λ + µ1)
µ1(µ2 − µ1)(2λ + µ1 + µ2)

,

LRSDHI
C2

< 1 for b ∈ (bC2 ,∞) ,

LRSDHI
C2

> 1 for b ∈ (0, bC2) .

(6.17)

Thus, only for b = bC1 for cycles of type C1 and for b = bC2 for cycles of type C2,
likelihood ratios of those cycles are equal to 1. Since the equivalence bC1 = bC2 is
impossible for any network parameters (otherwise, (λ + µ1)/(2λ + µ1 + µ2) = 1, and,
hence, λ + µ2 = 0), a likelihood ratio of a path also for the SDHI change of measure
does depend on cycles if those cycles have a length three and touch the boundary
x2 = 0.

Summary of the previous observations
Thus, from Observations 1–3 we see that

1. cycles that go only through states with x2 ≥ b are “harmless” for the likelihood
ratio of the whole path;

2. for 0 ≤ x2 < b, cycles of length 3 that touch boundary x2 = 0 have likelihood
ratios not equal to 1, hence, are “problematic”. However, the probability of
those cycles can be very small if a path does not go near the border x2 = 0 all
the way, and, hence, may be not that “harmful”.

Remark 6.1.1. Since the term “harmful” is used later in this section, we define it
here. We call a cycle “harmful” (for the likelihood ratio of the path) if its likelihood
ratio is not equal to one.

Now, the question arises, what is the behavior of other cycles, namely, those, that do
not touch the boundary x2 = 0?

Observation 4. Any cycle of length 3 · c (for c > 1) can be decomposed to c cycles
of length 3 with some multiplicand that is a ratio of arrival rates at different states.
This multiplicand is equal to 1 for SDHI, and can be smaller or larger than 1 for the
SDH change of measure depending on the cycle type.

The proof of the above observation is given in Appendix B. There we, first, show
that this is true for all cycles of length six and then use induction to show that this
is also true for every cycle of length more than six.

The above observation is more useful for the SDHI change of measure since it
guarantees that this is sufficient to study only cycles of length three.

Observation 5. Likelihood ratios of cycles going through states 0 < x2 < b can be
larger than 1 for some values of b and larger or smaller than 1, depending on x2, for
other values of b for both the SDH and SDHI changes of measure.

Let us consider an example of a 2-node tandem network with λ = 0.18, µ1 = 0.42,
µ2 = 0.4. To prove the above observation, let us look at likelihood ratios for cycles of
length three (Figures 6.2a, 6.3a) and six (Figures 6.2b, 6.3b) for the SDH and SDHI
changes of measure, respectively.
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Figure 6.2: 2 tandem (λ = 0.18, µ1 = 0.42, µ2 = 0.4). SDH
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Figure 6.3: 2 tandem (λ = 0.18, µ1 = 0.42, µ2 = 0.4). SDHI
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Remark 6.1.2. The parameter x2 on the horizontal axis corresponds to the mini-
mum x2 for all x2 from the cycle.

Red lines in these figures correspond to likelihood ratios of SDH or SDHI changes
of measure with b = bopt found by simulation. One can see that for x2 ≥ b they are
equal to one and for 0 < x2 < b they take values both above and below one.

For other values of b, we saw experimentally that curves of likelihood ratios go
up when b becomes smaller and go down when b increases. Thus, we picked some
other values of b, namely, the two extreme cases. The first is the case when likelihood
ratios are always larger than (or equal to) one. This is b = b′, corresponding to the
maximum of those values and depicted with blue lines.

For x2 = 0 or x2 = b − 2, likelihood ratios turned out to be larger than one for
all b. This corresponds to cycles that touch boundary x2 = 0 and x2 = b. Thus, we
considered only the cycles that do not touch those boundaries and tried to find the
minimum b = b∗ for which likelihood ratios are smaller (or equal to) one. These are
states with 1 ≤ x2 ≤ b−2 for cycles of length three and states with 1 ≤ x2 ≤ b−3 for
cycles of length six. The likelihood ratios corresponding to b = b∗ are depicted with
green lines.

As one can see, the optimal value of b (bopt, obtained via simulation) is such that
likelihood ratios for cycles of length three and six are smaller than one for some and
larger than one for other values of x2. It is interesting to note that (for this example
of arrival and service rates) bopt = b′ + 1, i.e., it is one more than the maximum b for
which likelihood ratios (for cycles of length three and six) are larger than one, or, in
other words, it is the minimum b for which likelihood ratios become smaller than one.

Note, however, that there is no proof that bopt is always such that bopt = b′ + 1
and that b′, b∗ exist for all network parameters of a 2-node tandem network.

The main purpose of this observation was to show that the likelihood ratio of a
cycle that does not touch the boundary x2 = 0 is not equal to one. We showed this
on one network example and also observed this for others (not included here).

Summary of the previous observations
Thus, from Observations 1–5 we see that

1. cycles going only through states with x2 ≥ b are “harmless” for the likelihood
ratio of the whole path;

2. cycles of length 3 that touch boundary x2 = 0 and go through states with
0 ≤ x2 < b are “problematic” but unlikely;

3. cycles of length more than 3 and going through states with 0 < x2 < b can be
larger and smaller than 1, hence, also “problematic”.

Thus, all cycles that go through states with 0 < x2 < b are “harmful” for a
likelihood ratio of a path. Now, the question is, does this number grow with
the overflow level N? If it is small enough compared to the likely states that a
path visits this might be not that “harmful”.
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Observation 6. Likelihood ratios of cycles for both the SDH and SDHI change of
measure do not go to 1 in the limit as overflow level N →∞.

We saw from the previous observations that a likelihood ratio of a cycle going through
states with x2 ≥ b is equal to one, hence, these states are “harmless” for the likelihood
ratio of the path. A likelihood ratio of a cycle going through states with x2 < b is not
equal to one, thus, these states are “harmful” and their number depends on b.

From the experimental results in Section 3.6 we saw that for some network pa-
rameters the optimal b (b = bopt) depends on the overflow level N and grows slowly
as N → ∞ (cf. Figure 3.14). It was also observed experimentally (one can already
see that from Figures 6.2–6.3) that as b increases, the lowest point of the curves does
not increase, i.e., a likelihood ratio does not go to one when b increases, and, hence,
“harmful” states stay to be such. Since the number of them depends on b and b grows
with the overflow level N , the number of these states also grows as N →∞, and the
probability that a cycle go through these states is not rare.

Consequently, likelihood ratios of cycles for both the SDH and SDHI change of
measure are not always equal to one, nor go to one in the limit as the overflow level
N →∞. This means that we can not use some crucial parts of the reasoning in [47]
to prove the asymptotic efficiency of our changes of measure. Hence, unfortunately,
the second proof approach can not be applied, either.

The observations above are, however, helpful in explaining why our changes of
measure showed good performance. The value bopt found by simulation might be
such that on average cycles have likelihood ratios almost equal to one, hence, the
likelihood ratio of a path does not depend much on the number of cycles it has.
Another explanation could be that cycles mostly go through states with x2 ≥ b (for
which likelihood ratios are equal to one according to Observation 1).

6.1.4 Final remarks

As we saw from the previous discussion, neither of the two approaches for proving
asymptotic efficiency can be applied in our case. However, we presented them for two
reasons. First, to show that these approaches fall short as proofs for our changes of
measure. Second, to give more understanding on the behavior of changes of measure.
These observations may form a good step as a starting point for further research.

6.2 Non-Markovian networks

In this section we discuss the extension of our heuristics to non-Markovian queuing
networks. In Section 6.2.1 we describe the two models that we are going to consider.
In Section 6.2.2 we repeat a known result for simulating a GI/GI/1 queue, which we
will use later. In Section 6.2.3 the specifics of state-dependent simulation for non-
Markovian queuing networks are discussed in general. In Section 6.2.4 we propose two
specific changes of measure. In Sections 6.2.7–6.2.8 its performance is experimentally
validated for the two examples.
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6.2.1 Non-Markovian models

In the previous chapters all the networks we considered were Jackson queuing net-
works. Modeling arrival and service processes as Markovian is only an approximation
to a real communication networks behavior, though possibly realistic one for an arrival
process in some cases (when users independently send about the same amount of traf-
fic). At the same time, assuming that the service process is exponentially distributed
is less realistic. It is more reasonable to suggest that it is bi-modally distributed, i.e.,
that packets are of two different kinds, say, the acknowledgment packets and the real
data packets and each type of packet has some specified amount of time that it needs
to be served.

More realistic arrival processes can be achieved if we allow some burstiness, i.e.,
packets can come in batches. This can be implemented by modeling the inter-arrival
times as hyper-exponentially distributed random variable.

In the end, our goal is to consider a fully non-Markovian network, i.e., both,
inter-arrival and service times being non-exponentially distributed. This would be,
for example, the case with inter-arrival times being hyper-exponentially distributed
and service times being bi-modally distributed. As an intermediate step, we look at
a case in which one of the two processes is Markovian. We choose the case when the
arrival process is such, i.e., service times are bi-modally distributed and inter-arrival
times are exponentially distributed.

Service process

Consider the service times to be bi-modally distributed. Suppose that the transmission
speed is ν (bits/sec) and packets have length l1 with probability p and length l2 with
probability 1− p. We call them packets of type 1 and 2, respectively. Then,

service time =
{

t1 = l1/ν, with probability p,
t2 = l2/ν, with probability (1− p),

and the moment generating function of the service process is

Mserv(θ) = eθt1p + eθt2(1− p). (6.18)

An Importance Sampling (IS) change of measure to be used for simulating bi-
modally distributed service times changes the probability p, and neither, the trans-
mission speed, nor packets lengths can be changed, since the latter two are not ran-
dom. This also follows from the definition of IS. If in the new system an event is
possible such that in the original system it has a zero probability, the corresponding
likelihood ratio is equal to zero. Thus, only the events that are possible in the original
system have a non-zero probability in the new system.

Arrival process

If the inter-arrival times are exponentially distributed with rate λ, then, its density
function is

f(x) = λe−λx, (6.19)
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and the moment generating function is equal to

Mar(θ) =
λ

λ− θ
. (6.20)

If the inter-arrival times are hyper-exponentially distributed with parameters λ1, λ2,
i.e., the inter-arrival time is with probability q an exponentially distributed random
variable X1 with mean 1/λ1 and with probability (1−q) an exponentially distributed
random variable X2 with mean 1/λ2, then, its density function is

f(x) = qλ1e
−λ1x + (1− q)λ2e

−λ2x, (6.21)

and the moment generating function

Mar(θ) =
qλ1

λ1 − θ
+

(1− q)λ2

λ2 − θ
. (6.22)

An IS change of measure changes the arrival rate λ for exponentially distributed
inter-arrival times, and the rates λ1, λ2 and the probability q for hyper-exponentially
distributed inter-arrival times.

Model 1: M/Bim/1 → ·/Bim/1

The first network model we consider is a 2-node tandem queuing network with inter-
arrival times being exponentially distributed and the service times at node i being
bi-modally distributed with probability p (for both nodes) and packet types l1 and l2.
In a real system the outgoing process from node 1 determines the incoming process
to node 2, i.e., if a packet of type k enters node 1 it goes to node 2 with probability
one, thus, generally speaking node 2 does not have a probabilistic choice of a packet
type. In our simplified model we ignore this and assume that node 2 still has a
probabilistic choice (with the same probability p), i.e., we assume that nodes operate
independently of each other. This is know as Kleinrock’s independence assumption
and has been shown by numerous simulation results to be reasonable for networks of
moderate connectivity [48].

Model 2: H2/Bim/1 → ·/Bim/1

The second model we consider is also a 2-node tandem queuing network with the
service times at each node being bi-modally distributed with parameters l1, l2, p, but
the inter-arrival times being hyper-exponentially distributed with the rates λ1, λ2 and
the probabilities q, (1− q). The above assumption of independence regarding service
times at node 2 is also made.

6.2.2 Optimal change of measure for GI/GI/1 queue

As discussed in Section 2.4.1 and shown in [2], a provably asymptotically efficient
change of measure for simulating a GI/GI/1 queue, is an exponential change of mea-
sure (exponential twist), proposed in [15] and defined as

dF̃ (x) =
eθxdF (x)

M(θ)
, with θ ∈ R, (6.23)
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where F (x) is the original distribution and M(θ) = Eeθx is the moment generating
function. The best change of measure is the one for which parameter θ = θ∗, with θ∗

being a solution of the equation

Mar(−θ)Mserv(θ) = 1, (6.24)

with Mar(θ) and Mserv(θ) being the moment generating functions, for the arrival
and service process, respectively. According to (6.23), the new inter-arrival time
distribution is given by

dF̃ar(x) =
e−θ∗xdFar(x)

Mar(−θ∗)
, (6.25)

and the new service time distribution is given by

dF̃serv(x) =
eθ∗xdFserv(x)

Mserv(θ∗)
. (6.26)

This is the PW change of measure which for an M/M/1 queue exchanges arrival
and service rate. We used this change of measure to construct our heuristics for
Markovian networks and are going to do the same for non-Markovian ones.

Model 1: When the arrival process is exponentially distributed and the service
process is bi-modally distributed the value θ∗ for exponentially twisted change of
measure is found as a solution of Equation (6.24), i.e.,

λ

λ + θ

(
eθt1p + eθt2(1− p)

)
= 1. (6.27)

One of the two non-negative solutions [23] is θ = 0 which corresponds to no change
of measure, and, hence, can not be considered. Another one is θ > 0, which can be
found numerically.

Model 2: If the arrival process is hyper-exponentially distributed and the service
process is bi-modally distributed, then θ∗ is found from

(
qλ1

λ1 + θ
+

(1− q)λ2

λ2 + θ

)
· (eθt1p + eθt2(1− p)

)
= 1. (6.28)

Again, we are not interested in the solution θ = 0 and the solution θ > 0 can be found
numerically.

6.2.3 Simulating non-Markovian networks

In the previous chapters all the networks under consideration had exponentially dis-
tributed inter-arrival and service times, thus, could be simulated as discrete time
Markov chains (DTMC). The natural advantage of it, of course, was the irrelevance
of time for a full system state description. For non-Markovian networks a state of
the system does include time, and, thus, at each moment in time (and, specifically, at
each moment that some event happens) the system state is represented not only by
the number of customers at each node, but also by the time elapsed since the previous
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service completion at each node (if the service time has a non-exponential distribu-
tion) and the time elapsed from the previous arrival to the network (if the inter-arrival
time has a non-exponential distribution). Hence, every time a new event is scheduled
the elapsed times for every node have to be taken into account and the new event
has to be scheduled conditioned on it. This makes programming a non-Markovian
simulator much more complicated.

Another complication is the existence of two ways to schedule the next event.
This gives two different types of changes of measure. The first one, called a change of
measure without rescheduling, does the following. At each moment the state changes
due to a service completion at some node or an arrival to the network, the next event
is scheduled only for this specific node and the events scheduled for other nodes are
unchanged. The second way, called a change of measure with rescheduling, changes
the time of the next event for each node, every time the system state changes. Be-
sides rescheduling, a state-dependent change of measure can be either partly state-
dependent, i.e., depends only on the number of customers in the network and not on
the elapsed times, or fully state-dependent, i.e., depends also on the elapsed times.
The second one is difficult to implement since it would require continuous reschedul-
ing. For more detailed information on the exact algorithm description and different
types of changes of measure see [49]. According to [49] the most efficient and prac-
tical one is a partially state-dependent change of measure with rescheduling. This
is the one we use in our case. For experiments with non-Markovian networks in
Sections 6.2.7–6.2.8 we used the simulation program of the author of [49].

6.2.4 Extension for tandem networks. General case

To construct a change of measure for a 2-node non-Markovian tandem queuing net-
work we apply the same procedure as for the Markovian case. There our change
of measure is a combination (depending on a number of customers in each node) of
changes of measure which are proven to be the best to “push” a single node, i.e.,
the exponential twist (Equation (6.23)). For the M/M/1 queue, the exponentially
twisted change of measure simply means interchanging the arrival and service rates.
For non-Markovian node the interpretation depends on the inter-arrival and service
time distribution.

The change of measure for a 2-node non-Markovian tandem network (cf. Sec-
tion 3.2.3 for the Markovian case) can be written as

COM x2 =
[x2

b

]1

COM 2 +
[
b− x2

b

]+

COM 1, (6.29)

where COM i is the exponentially twisted change of measure for node i (Equa-
tion (6.23)), [a]1 = min(a, 1), [a]+ = max(a, 0) and x2 is the number of customers at
node 2. As before the change of measure depends on parameter b, which are yet to
be determined.

The alternative change of measure (equivalent to the one in Appendix A, i.e., with
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dependence on the number of customers (x1 and x2) at both nodes) is

COM x1,x2 =
[
x2

b2

]1

COM 2 +
[
b2 − x2

b2

]+

×

×
([

x1

b1

]1

COM 1 +
[
b1 − x1

b1

]+

COM 0

)
,

(6.30)

where COM 0 corresponds to the original network parameters, i.e., no change of mea-
sure and b1, b2 being some integer numbers to be determined.

Equations (6.29)–(6.30) represent the dependence of the new network parameters
on the original ones. Note, however, that the exact representation of COM i still
needs to be defined, since parameters to be changed need to be chosen. There are
two possible ways.

The first possibility is to change the arrival and the service processes directly
through their parameters, i.e., let COM i represent the new arrival and service pa-
rameters for the whole network. The second possibility is to change the arrival and
the service processes indirectly, i.e., through the twisting parameter θ∗ and let COM i

represent the new twisting parameters.
Let us describe these two possibilities in more detail. Let θ∗i denote the optimal

twisting parameter for simulating node i as a single node (the non-zero solution of
Equation (6.24) with Mserv(θ) = Mservi(θ) where Mservi(θ) is the moment generating
function for the service distribution at node i).

The change of measure linear in the parameters: COMp

The first possibility, called the change of measure linear in the parameters and de-
noted by COMp (i.e., COM p

x2
and COM p

x1,x2
for (6.29) and (6.30), respectively) is

represented in the following steps.

1. Find the twisting parameters θ∗i for each node i.

2. Use Equations (6.25)–(6.26), for each node i to calculate the new inter-arrival
and service time distributions.

3. Use the results from the previous step to define COM i as a vector of the new
arrival and service parameters to “push” node i as a single node.

4. Define the change of measure for the whole network as a vector of the new
arrival and service parameters using Equation (6.29) for COM p

x2
(respectively,

Equation (6.30) for COM p
x1,x2

) and COM i defined in the previous step.

In other words, the change of measure for the whole network is a combination of
changes of measure for each node.

The change of measure linear in θ: COMθ

The second possibility, called the change of measure linear in θ and denoted by COMθ

(i.e., COM θ
x2

and COM θ
x1,x2

for (6.29) and (6.30) changes of measure, respectively),
is defined as follows. In essence, in this approach, we change the order of the steps
proposed above by moving step 2 to the last position.
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1. Find the twisting parameters θ∗i for each node i.

2. Define COM i as a vector of twisting parameters to “push” node i as a single
node in the network.

3. Define a vector of twisting parameters for the whole network using Equa-
tion (6.29) for COM θ

x2
(respectively, Equation (6.30) for COM θ

x1,x2
).

4. The change of measure for the whole 2-node tandem network is defined from
Equations (6.25)–(6.26) with the twisting parameter parameter found in the
previous step.

In other words, the change of measure for the whole network is defined as exponential
twist with parameter θ∗ found as a combination of twisting parameters for each node.

Note that for Markovian models, the above two possibilities are equivalent, since
the new (exponentially twisted) arrival and service rates depend linearly on θ∗ as
λ̃ = λ + θ∗ and µ̃ = µ − θ∗. Below we present the exact equations of the proposed
heuristics for both our models.

6.2.5 Exact calculation of COM for Model 1:
M/Bim/1 → ·/Bim/1

Let θ∗1 , θ∗2 denote the twisting parameters for node 1 and 2 (found from Equa-
tion (6.23)). Let

ti,k =
lk
νi

(6.31)

denote the service time of packet of type k at node i (remember that lk is a length of
a packet of type k and νi is a service rate at node i). Let λ̃i denote the new arrival
rate and p̃i denote the new probability for the service process for node i.

The change of measure linear in the parameters: COMp

COMp changes the arrival rate and the probability pi for node i, i.e.,

λ̃i = λ + θ∗i , (6.32)

p̃i =
eθ∗i ti,1p

Mservi(θ∗i )
. (6.33)

Then, the optimal exponentially twisted change of measure COM i for a single node i
(i = 1, 2) determines the new arrival rate, the new probability at node 1 and the new
probability at node 2 as

COM 1 = (λ̃1, p̃1, p), (6.34)

COM 2 = (λ̃2, p, p̃2), (6.35)

COM 0 = (λ, p, p), (6.36)

where COM 0 corresponds to no change of measure. The resulting COM p
x2

for Model 1
is equal to (substituting (6.34) and (6.35) into (6.29))
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COM p
x2

:





λ̃ = λ +
[x2

b

]1

θ∗2 +
[
b− x2

b

]+

θ∗1 ,

p̃1 = p

([x2

b

]1

+
[
b− x2

b

]+
eθ∗1 t1,1

Mserv1(θ∗1)

)
,

p̃2 = p

([x2

b

]1 eθ∗2 t2,1

Mserv2(θ∗2)
+

[
b− x2

b

]+
)

.

The change of measure COM p
x1,x2

for Model 1 can be written by substitut-
ing (6.34), (6.35) into (6.30).

The change of measure linear in θ: COMθ

COMθ is defined as follows. COM i denotes the new twisting parameters, i.e.,

COM 1 = (−θ∗1 , θ∗1 , 0), (6.37)

COM 2 = (−θ∗2 , 0, θ∗2), (6.38)
COM 0 = (0, 0, 0). (6.39)

Thus, COM 1 twists node 1, change of measure COM 2 twists node 2 and COM 0

corresponds to no change of measure.
The linear in θ change of measure is defined as the exponentially twisted distribu-

tion with parameter θ∗ defined as follows

COM θ
x2

:





θ̃ar = −
[x2

b

]1

θ∗2 −
[
b− x2

b

]+

θ∗1 ,

θ̃serv1 =
[
b− x2

b

]+

θ∗1 ,

θ̃serv2 =
[x2

b

]1

θ∗2 ,

(6.40)

COM θ
x1,x2

:





θ̃ar = −
[
x2

b2

]1

θ∗2 −
[
b2 − x2

b2

]+ [
x1

b1

]1

θ∗1 ,

θ̃serv1 =
[
b2 − x2

b2

]+ [
x1

b1

]1

θ∗1 ,

θ̃serv2 =
[
x2

b2

]1

θ∗2 .

(6.41)

This changes the arrival and service parameters as follows




λ̃ = λ + θ̃ar,

p̃1 =
eθ̃serv1 t1,1p

Mserv1(θ̃serv1)
,

p̃2 =
eθ̃serv2 t2,1p

Mserv2(θ̃serv2)
,

(6.42)

where twisting parameters θ̃ar, θ̃serv1 and θ̃serv2 are found from the set of Equa-
tions (6.40) for COM θ

x2
and from the set of Equations (6.41) for COM θ

x1,x2
.
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6.2.6 Exact calculation of COM for Model 2:
H2/Bim/1 → ·/Bim/1

Let λ̃i,1, λ̃i,2, q̃i, (1 − q̃i) denote the new arrival rates and probabilities for node i,
and p̃i denote the new probability for the service process for node i.

The change of measure linear in the parameters: COMp

For Model 2 COMp changes the arrival rates λ1 and λ2, the arrival probabilities q
and (1−q) and the service process probability pi (for node i). From (6.25)–(6.26) the
new network parameters can be found as follows

λ̃i,k = λk + θ∗i , (6.43)

q̃i =
qλ1(λ2 + θ∗i )

qλ1(λ2 + θ∗i ) + (1− q)λ2(λ1 + θ∗i )
, (6.44)

p̃i =
eθ∗i ti,1p

Mservi(θ∗i )
. (6.45)

The changes of measure COM i for each node i correspond to the new arrival and
service processes and are equal to

COM 1 = (λ̃1,1, λ̃1,2, q̃1, p̃1, p), (6.46)

COM 2 = (λ̃2,1, λ̃2,2, q̃2, p, p̃2), (6.47)

COM 0 = (λ1, λ2, q, p, p), (6.48)

where COM 0 corresponds to no change of measure.
The change of measure COM p

x2
for Model 2 is defined as (substituting (6.46)

and (6.47) into (6.29))

COM p
x2

:





λ̃1 = λ1 +
[x2

b

]1

θ∗2 +
[
b− x2

b

]+

θ∗1 ,

λ̃2 = λ2 +
[x2

b

]1

θ∗2 +
[
b− x2

b

]+

θ∗1 ,

q̃ = qλ1

([x2

b

]1 (λ2 + θ∗2)
qλ1(λ2 + θ∗2) + (1− q)λ2(λ1 + θ∗2)

+

+
[
b− x2

b

]+ (λ2 + θ∗1)
qλ1(λ2 + θ∗1) + (1− q)λ2(λ1 + θ∗1)

)
,

p̃1 = p

([x2

b

]1

+
[
b− x2

b

]+
eθ∗1 t1,1

Mserv1(θ∗1)

)
,

p̃2 = p

([x2

b

]1 eθ∗2 t2,1

Mserv2(θ∗2)
+

[
b− x2

b

]+
)

,

The change of measure COM p
x1,x2

for Model 2 can be written by substituting (6.46)–
(6.48) into (6.30).
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The change of measure linear in θ: COMθ

COMθ is defined from Equation (6.40) for COM θ
x2

and from Equation (6.41) for
COM θ

x1,x2
. The arrival and service processes of the whole network change as follows.





λ̃1 = λ1 + θ∗,

λ̃2 = λ2 + θ∗,

q̃ =
qλ1(λ2 + θ∗)

qλ1(λ2 + θ∗) + (1− q)λ2(λ1 + θ∗)
,

p̃1 =
eθ∗t1,1p

Mserv1(θ∗)
,

p̃2 =
eθ∗t2,1p

Mserv2(θ∗)
.

(6.49)

6.2.7 Experimental results for Model 1:
exponential arrivals and bi-modal service rates

In this section we consider the experimental results for Model 1 described in Sec-
tion 6.2.1. For each example we compare the performance of all four changes of
measure. For changes of measure dependent on both, x1 and x2, i.e., for COM p

x1,x2

and COM θ
x1,x2

, we choose b1 = b2.

Network parameters

Consider the example of Model 1 with the following parameters





λ = 5000 packets/s,
l1 = 50 bytes = 400 bits,
l2 = 1500 bytes = 12000 bits,
p = 0.4,

ν1 = 81 Mbit/s = 8.1 · 107 bit/s,

ν2 = 80 Mbit/s = 8 · 107 bit/s.

(6.50)

The network parameters are chosen to be close to ones that could be observed on an
Ethernet for the TCP protocol. The packet length l2 corresponds to a data packet and
the packet length l1 corresponds to an acknowledgment packet. Parameter p = 0.4
means that 40% of sent packets are acknowlegments, and 60% are the real data
packets.

The case of equal service rates at the two nodes is known to be the most difficult
for simulation. We have chosen our service rates to be almost equal since for equal
service rates two events may be scheduled at exactly the same time, which would need
special handling in the simulation program.
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The service time ti,k = lk/νi (Equation 6.31) of a packet of type k at node i is




t1,1 = 4.938 · 10−6 sec,

t1,2 = 14.815 · 10−5 sec,

t2,1 = 5 · 10−6 sec,
t2,2 = 15 · 10−5 sec,

(6.51)

and the system utilizations are equal to ρi = λ(pti,1 + (1− p)ti,2), with
{

ρ1 = 0.454,

ρ2 = 0.460.
(6.52)

Calculation of COMs

The numerical solutions of Equation (6.27) (rounded to integer values for simplicity)
for nodes 1 and 2 are, respectively,

{
θ∗1 = 9674,

θ∗2 = 9419.
(6.53)

The new arrival rates and service probabilities for COMp are found from Equa-
tions (6.32)–(6.33) and are equal to





λ̃1 = λ + θ∗1 = 14674 (bits/s),

λ̃2 = λ + θ∗2 = 14419 (bits/s),

p̃1 =
eθ∗1 t1,1p

Mserv1(θ∗1)
= 0.143,

p̃2 =
eθ∗2 t2,1p

Mserv2(θ∗2)
= 0.145.

(6.54)

(i.e., in the new system small packets have only around 14% of the traffic). The new
utilizations (of the system under the change of measure) are equal to

{
ρ̃1 = 1.874,

ρ̃2 = 1.859.
(6.55)

Thus,
COM 1 = (λ̃1, p̃1, p) = (14674, 0.143, 0.4), (6.56)

COM 2 = (λ̃2, p, p̃2) = (14419, 0.4, 0.145), (6.57)

COM 0 = (λ, p, p) = (5000, 0.4, 0.4), (6.58)

and the COMp for simulating the whole system is found through Equation (6.29) for
COM p

x2
and through Equation (6.29) for COM p

x1,x2
. The COMθ is defined from the

set of Equations (6.42) together with Equation(6.40) for COM θ
x2

and Equation(6.41)
for COM θ

x1,x2
with

COM 1 = (−9674, 9674, 0), (6.59)

COM 2 = (−9419, 0, 9419), (6.60)

COM 0 = (0, 0, 0). (6.61)
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N COM p
x1,x2 COM θ

x1,x2
bopt γ̃(N) ± RE% bopt γ̃(N) ± RE%

10 4 9.1776e-04 ± 0.14 4 9.1795e-04 ± 0.15
25 4 2.5937e-10 ± 0.17 5 2.5882e-10 ± 0.19
50 5 1.3566e-21 ± 0.21 5 1.3527e-21 ± 0.22
100 6 1.9320e-44 ± 0.27 6 1.9347e-44 ± 0.29

Table 6.1: Model 1

Results description

In Figures 6.4–6.5 the simulation results are presented for four different values of the
overflow level N . The dependence of the relative error (RE ) of the estimator on the
parameter b is shown for all four proposed heuristics. The results are gathered with
105 replications.

The purpose of including the figures is to show and (also check) the stability of
the heuristics. As one can see, all of them give small RE s but the heuristics with the
dependence only on the number of customers at node 2 are clearly less stable, hence,
less reliable. At the same time the heuristics that depend on the number of customers
at both nodes, i.e., COM p

x1,x2
and COM θ

x1,x2
are clearly very stable. Moreover, there

is one b = bopt for each level, at which the minimum RE is achieved.
In Figure 6.6 the results for COM p

x1,x2
and COM θ

x1,x2
(two best performing

changes of measure) with more replications (16·105) are shown. One can see that they
perform almost the same, though the first one is a bit more smooth for the overflow
level N = 100. One can also see that RE of an estimator for low level N = 10 is not
very sensitive with respect to b. Starting from b = 3 RE changes very slow with b. At
the same time, the curves of RE start to be more “deep” near the minimum for higher
levels N , which means that it is more important for the efficiency of the heuristics
to choose the right b. It is also interesting to note, that RE is more sensitive to the
lower than to the higher than bopt values of b, i.e., for b < bopt, RE grows very fast
when b decreases whereas for b > bopt, RE is slowly growing with increasing b.

Table 6.1 shows estimated overflow probabilities obtained with 16 ·105 replications
for COM p

x1,x2
and COM θ

x1,x2
. The relative errors, shown in percent, are very small,

and grow less than linearly with the overflow level N .
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Figure 6.4: Model 1. Changes of measure linear in the parameters. 105 replications
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Figure 6.5: Model 1. Changes of measure linear in θ. 105 replications
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Figure 6.6: Model 1. Comparison of the two best performing COMs with 16 · 105

replications
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6.2.8 Experimental results for Model 2:
bursty arrivals and bi-modal service rates

In this section we consider the experimental results for Model 2 described in Sec-
tion 6.2.1. For each example we compare the performance of all four changes of
measure. For changes of measure dependent on both, x1 and x2, i.e., for COM p

x1,x2

and COM θ
x1,x2

, we choose b1 = b2.

Network parameters

Consider the example of Model 2 with the parameters





λ1 = 200 packets/s,
λ2 = 4000 packets/s,
q = 0.1,

l1 = 400 bits,
l2 = 12000 bits,
p = 0.3,

ν1 = 9.01 · 107 bit/s,

ν2 = 9 · 107 bit/s.

(6.62)

Hence, the service time of a packet of type k at node i is ti,k = lk/νi (Equation 6.31)
with





t1,1 = 4.440 · 10−6 sec,

t1,2 = 1.332 · 10−4 sec,

t2,1 = 4.444 · 10−6 sec,

t2,2 = 1.333 · 10−4 sec.

(6.63)

The system utilizations are equal to ρi = (λ1q +λ2(1− q)) · (pti,1+ (1− p)ti,2), which
yields

{
ρ1 = 0.34231,

ρ2 = 0.34269.
(6.64)

Calculation of COMs

The numerical solutions of Equation (6.27) (rounded to integer values for simplicity)
for nodes 1 and 2 are, respectively,

{
θ∗1 = 14376,

θ∗2 = 14347.
(6.65)
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The new arrival and service parameters for linear in parameters change of measure
are found from Equations (6.43)–(6.45) and are equal to





λ̃1,1 = λ1 + θ∗1 = 14576 (bits/s),

λ̃1,2 = λ2 + θ∗1 = 18376 (bits/s),

λ̃2,1 = λ1 + θ∗2 = 14547 (bits/s),

λ̃2,2 = λ2 + θ∗2 = 18347 (bits/s),
q̃1 = 0.007,

q̃2 = 0.007,

p̃1 =
eθ∗1 t1,1p

Mserv1(θ∗1)
= 0.06308,

p̃2 =
eθ∗2 t2,1p

Mserv2(θ∗2)
= 0.06318.

(6.66)

The new utilizations (of the system under the change of measure) are equal to
{

ρ̃1 = 2.295,

ρ̃2 = 2.294.
(6.67)

Thus,

COM 1 = (λ̃1,1, λ̃1,2, q̃1, p̃1, p) = (14576, 18376, 0.007, 0.0631, 0.3), (6.68)

COM 2 = (λ̃2,1, λ̃2,2, q̃2, p, p̃2) = (14547, 18347, 0.007, 0.3, 0.0632), (6.69)

COM 0 = (λ1, λ2, q, p, p) = (200, 4000, 0.1, 0.3, 0.3), (6.70)

and COMp for simulating the whole system is found through Equation (6.29) for
COM p

x2
and through Equation (6.29) for COM p

x1,x2
.

Results description

As for Model 1 we considered four different values of the overflow level N for all
four proposed heuristics. Figures 6.7–6.8 show the dependence of a relative error
of an estimator (RE ) on a parameter b. The simulation results are gathered for
105 replications.

One can see from the figures, that, as for Model 1, the heuristics with the de-
pendence only on the number of customers at node 2 are less stable. At the same
time the heuristics with dependence on the number of customers at both nodes, i.e.,
COM p

x1,x2
and COM θ

x1,x2
, are clearly very stable, especially COM p

x1,x2
, even for the

small number of replications (105). Again, there is one b = bopt for each level N at
which the minimum RE is achieved.

In Figure 6.9 the results for the two best performing changes of measure
(COM p

x1,x2
and COM θ

x1,x2
) with more replications (16 · 105) are presented. One

can see that they perform almost the same. The behavior of RE is very similar to
the one observed for Model 1. Namely, RE of an estimator is not very sensitive with
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Figure 6.7: Model 2. Changes of measure linear in the parameters. 105 replications
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Figure 6.8: Model 2. Changes of measure linear in θ. 105 replications
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Figure 6.9: Model 2. Comparison of the two best performing COMs with 16 · 105

replications



142 Ch. 6 Exploring further

N COM p
x1,x2 COM θ

x1,x2
b γ̃(N) ± RE% b γ̃(N) ± RE%

10 3 1.3068e-05 ± 0.12 3 1.30985e-05 ± 0.14
25 3 8.1645e-16 ± 0.14 3 8.11988e-16 ± 0.20
50 4 3.8084e-33 ± 0.20 4 3.81196e-33 ± 0.25
100 5 4.4188e-68 ± 0.32 5 4.45316e-68 ± 0.43

Table 6.2: Model 2

respect to b for low level N = 10, and starts to be more sensitive when level N in-
creases. Again, RE is more sensitive to the lower than to the higher than bopt values
of b.

Table 6.2 shows estimated overflow probabilities obtained with 16 ·105 replications
for COM p

x1,x2
and COM θ

x1,x2
. The relative errors, shown in percent, are very small,

and grow less than linearly with the overflow level N . It is very similar to what has
been observed for Model 1. Since both models have the same service but different
inter-arrival time distributions, this suggests, that there might be no or very little
dependence on the inter-arrival time distribution. This is, however, only guess, which
yet needs to be checked.

6.2.9 Final remarks

In Section 6.2 we have proposed the four state-dependent heuristics to simulate the
total population overflow in a 2-node non-Markovian tandem queuing network. Two
of them are partly state-dependent, i.e., depend only on the number of customers at
node 2, and other two are fully state dependent. Two types of models have been
considered and the heuristics have been checked experimentally. For both of the
examples the heuristics with full state-dependence showed very good performance
even for the worst known network parameters setting, namely, equal service rates.
This is a very promising result. More experiments are needed, however, to validate
the heuristics for both considered models, and, for other non-Markovian queuing
networks.



Chapter 7

Conclusions

In this chapter we list the main contributions of the thesis and discuss possibilities to
extend the research.

7.1 Contributions of the thesis

The main problem studied in this thesis is the estimation of the overflow probability
in queuing networks. The estimation was done using importance sampling simulation
for different types of networks.

The main result of the thesis is the invention of asymptotically efficient state-
dependent heuristics for different types of network topologies. The heuristics have
been developed for

• Jackson queuing networks of nodes in tandem,

• Jackson queuing networks of nodes in parallel,

• some specific types of feed-forward Jackson queuing networks,

• a 2-node feedback Jackson queuing network and

• a 2-node non-Markovian tandem queuing network.

Each of the heuristics is parametrized by parameters bi and there exists some optimal
parameter bopt (needs to be found by experiments) for which the heuristic with bi =
bopt (for all network nodes) shows the best performance. In more detail the results
were the following.

For tandem networks, networks of nodes in parallel and feed-forward Jackson
networks an extensive experimentation for networks of up to four nodes was done.
Thus, the heuristics were experimentally validated. The experimental results showed
very good performance for all possible settings of network parameters.

The heuristics for a 2-node tandem Jackson network were fully investigated and
bopt was found exactly for some network settings, and the scope of possibilities was
given for other network settings.
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The changes of measure for a 2-node tandem queuing network were investigated
further. Two approaches for a theoretical proof of their asymptotic efficiency were
considered. It was shown that none of the two can be applied. Despite that, this
consideration was useful to gain some understanding in the behavior of changes of
measure.

For all types of Jackson queuing networks considered, some examples were chosen
(for each of the network type) and the heuristics have been compared with a specific
state-dependent adaptive algorithm. For the majority of the cases the heuristics
showed similar or better performance. At the same time, they have an advantage of
being much simpler and easier to implement compared with the adaptive method. It
is very interesting that such simple heuristics, namely, with only linear dependence
on the network parameters, work so well where the adaptive algorithm tries to find a
good approximation. At the same time, the heuristics do depend, and sometimes, very
strongly, on a right choice of a parameter b which needs to be found by experiments.
In that sense the adaptive algorithm, which also involves some parameter b, is not
that sensitive to the right choice of it.

7.2 Future work

Below we list several possibilities to extend the research done in this thesis.
The first direction is a theoretical proof of asymptotic efficiency of the proposed

heuristics. This is the most valuable but also the most difficult direction.
Another possible direction of research is finding the exact dependency of the pa-

rameter bopt on network parameters, i.e., some kind of dependency bopt(λ, µ1, .., µd). If
it is known, one can estimate the probability of total population overflow by applying
the heuristics with b = bopt(λ, µ1, .., µd) and obtain a reliable estimate immediately,
with no need to first search for bopt.

A promising direction for further investigation is the extension of the heuristic
proposed for the specific types of feed-forward network to any type of feed-forward
network, and the extension of the heuristic from a 2-node feedback network to a
network with any number of nodes. Once this is done, all possible network topologies
are covered.

Last but not least, more experiments with non-Markovian networks can be done.
First, for a 2-node tandem non-Markovian network to experimentally validate the
heuristic proposed in this thesis. Second, for other non-Markovian network topologies
to check whether the heuristics proposed for Markovian networks can be extended to
the non-Markovian case.



Appendix A

Fully state-dependent
heuristic for tandem networks

In this appendix we present a fully state-dependent change of measure for a d-node
Markovian tandem queuing network. This heuristic has been developed during the
experiments with a 4-node feed-forward queuing network in Section 5.3.1. As a part of
the heuristic for a feed-forward network the fully state-dependent change of measure
has shown much better performance than the heuristics developed in Section 3.3.1–
3.3.2. The equivalent of the fully state-dependent heuristic has also been applied for
a 2-node non-Markovian tandem queuing network (Section 6.2.4) and has shown very
good performance, as well.

Below we present experimental results on a 2-node Markovian tandem queuing
network for different parameters settings. We compare it with the heuristic proposed
in Section 3.2.4 and show that the fully state-dependent change of measure is better
only for some cases of equal service rates. This fact has been the reason of including
it here, and not in Chapter 3.

Heuristic for a 2-node Markovian tandem network

Let COM i denote the PW change of measure to “push” node i (i = 1, 2) as a single
node, and let COM 0 correspond to the original network parameters, i.e., no change
of measure:

COM 0 = (λ, µ1, µ2) ,

COM 1 = (µ1, λ, µ2) ,

COM 2 = (µ2, µ1, λ) .
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Then, the fully state-dependent heuristic SDHx1,x2 for a 2-node tandem network is
given as follows

SDH x1,x2 =
[
x2

b2

]1

COM 2 +
[
b2 − x2

b2

]+

×
([

x1

b1

]1

COM 1 +
[
b1 − x1

b1

]+

COM 0

)
, (A.1)

SDH 0,1 = (λ̃, µ̃1, 0), (A.2)

where b1, b2 are integer numbers to be determined and [a]1 = min(a, 1), [a]+ =
max(a, 0). Equation (A.2) is added to ensure that all cycles during the simulation
reach the rare event. For the new arrival and service rates the change of measure
means the following.

8
>>>>>>>>>>>><
>>>>>>>>>>>>:
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x2
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· µ2 +
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 »
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x1

b1

–1
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b1 − x1

b1

–+
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!
,

µ̃2(0, 1) = 0,

Note that the above change of measure is very similar to the one in Section 3.2.3,
with the only difference that it also depends on the number of customers at node 1
(hence, the name fully state-dependent).

Performance for a 2-node Markovian tandem network

Section 3.6.1 reported on the comparison of two state-dependent changes of measure
proposed in Sections 3.2.3–3.2.4. The variance reduction ratio (VRR, Equation (3.30))
was used as a measure of comparison. It was shown (Proposition 1) that SDHI
outperforms SDH. Here, we compare the performance of the SDH x1,x2 change of
measure with the SDHI change of measure, i.e., the one that turned out to be the
best.

Two sets of experiments have been done, namely, with b1 = b2 = b and b1 = 1,
b2 = b with b found during the simulation. Figures A.1–A.2 depict the variance
reduction ratios. VRR > 1 means that SDH x1,x2 performs better, otherwise, SDHI is
better. One can clearly see from Figure A.1 that for b1 = b2 = b, SDH x1,x2 performs
worse than SDHI, since for almost all checked parameters VRR < 1 . Only for some
points near µ1 = 0.35 for level N = 100 (depicted in red dots) VRR > 1, but those
points correspond to non-rare events (since µ1 ≈ 0.35 and µ1 = µ2, thus λ ≈ µ1 ≈ µ2

and the loads at both nodes are close to one).
The experiments with b1 = 1 (Figure A.2) showed a bit better performance than

with b1 = b2, however, still for most of the cases SDHI outperforms SDH x1,x2 . Only
for some parameters with µ1 ≈ µ2 (Figure A.2b) SDH x1,x2 performs better than
SDHI. Thus, for a 2-node Markovian tandem network SDHI stays the best performing
change of measure.
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Figure A.1: Comparison of SDH x1,x2 and SDHI performance (b1 = b2)
for a 2-node tandem network
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Figure A.2: Comparison of SDH x1,x2 and SDHI performance (b1 = 1)
for a 2-node tandem network
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The experiments for more nodes in tandem have not been done. However, below
we present the general heuristic for a d-node tandem network, since it is has been
used to construct the heuristic for a feed-forward network (Section 5.3.1) and might
be useful for tandem non-Markovian networks.

Generalization to a d-node tandem network

The fully state-dependent heuristic for a d-node tandem network can be described as
follows:

SDH x1,x2 =
[
xd

bd

]1

COM d +
[
bd − xd

bd

]+

×
([

xd−1

bd−1

]1

COM d−1 +
[
bd−1 − xd−1

bd−1

]+

. . .

×
([

x1

b1

]1

COM 1 +
[
b1 − x1

b1

]+

COM 0

)
. . .

)
,

where
COM 0 = (λ, µ1, . . . , µd),

COM j = (µj , µ1, . . . , µj−1, λ, µj+1, . . . , µd), j = 1, . . . , d.

The parameters bj (j = 1, . . . , d) are integer numbers that need to be found.
For d > 2 the above fully state-dependent heuristic has only been validated on a
3-node Markovian tandem network as a part of a feed-forward heuristic described

in Section 5.3.1. Note, however, that if we define
[

x1
b1

]1

= 1,
[

b1−x1
b1

]+

= 0 for
b1 = 0, then SDH x1,x2 ≡ SDH, as proposed in Section 3.3.1 (hence, this case has
been validated).

The above heuristic can also be applied for a non-Markovian tandem network, in
which case COM j , j = 1, . . . , d, is found from Equation (6.23). See more discussion
in Section 6.2.4.
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Proof of Observation 4
(Section 6.1.3)

We define a cycle (C) of length n as a sequence of states (x1, x2)→(x(2)
1 , x

(2)
2 )→

. . . →(x(n)
1 , x

(n)
2 ) →(x1, x2) such that for all i = 1, . . . , d, (x(i)

1 , x
(i)
2 )6=(x1, x2). For

each i = 2, . . . , d−1 the state (x(i−1)
1 , x

(i−1)
2 ) is called a predecessor state and the state

(x(i+1)
1 , x

(i+1)
2 ) is called a successor state. Thus, Figure B.1 represents an example of

a cycle, and Figure B.2 represents two cycles connected in one point.
To prove Observation 4 we first show that it is true for all cycles of length six and

then use induction to show that it is also true for every cycle of length more than six.

Cycles of length six

Let us consider state (x1, x2). There are only two types of cycles of length six starting
from state (x1, x2), i.e., a cycle C6 (cf. Figure B.3):

C6 : (x1, x2) → (x1 + 1, x2) → (x1 + 2, x2) → (x1 + 2, x2 − 1) →
→ (x1 + 2, x2 − 2) → (x1 + 1, x2 − 1) → (x1, x2),

and a cycle C ′6 (cf. Figure B.4):

C ′6 : (x1, x2) → (x1 − 1, x2 + 1) → (x1 − 2, x2 + 2) → (x1 − 2, x2 + 1) →
→ (x1 − 2, x2) → (x1 − 1, x2) → (x1, x2)

The corresponding likelihood ratios are equal to

LRC6 =
λ2µ2

2µ1
2

λ̃2(·, x2)µ̃2(·, x2)µ̃2(·, x2 − 1)µ̃1(·, x2 − 2)µ̃1(·, x2 − 1)
,

LRC′6 =
µ1

2µ2
2λ2

µ̃1(·, x2)µ̃1(·, x2 + 1)µ̃2(·, x2 + 1)µ̃2(·, x2)λ̃2(·, x2)
.
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Figure B.1: Cycle Figure B.2: Two connected cycles

Figure B.3: Cycle C6

Figure B.4: Cycle C ′6



Proof of Observation 4 (Section 6.1.3) 153

Note that we skip index x1 to make the equations more readable, since both the SDH
and SDHI changes of measure depend only on x2, for all states except state (0,1). At
state (0,1), µ̃2(0, 1) = 0, i.e., the transition to state (0,0) is not allowed, therefore,
there are no cycles that include this transition.

Now consider cycles C3,i and C ′3,i (first index is for the cycle length, second index
is for the cycle number):

C3,1 : (x1, x2) → (x1 + 1, x2) → (x1 + 1, x2 − 1) → (x1, x2),

C3,2 : (x1 + 1, x2 − 1) → (x1 + 2, x2 − 1) →
→ (x1 + 2, x2 − 2) → (x1 + 1, x2 − 1),

and,

C ′3,1 : (x1, x2) → (x1 − 1, x2 + 1) → (x1 − 1, x2) → (x1, x2),

C ′3,2 : (x1 − 1, x2 + 1) → (x1 − 2, x2 + 2) →
→ (x1 − 2, x2 + 1) → (x1 − 1, x2 + 1).

The corresponding likelihood ratios are equal to

LRC3,1 =
λµ2µ1

λ̃(·, x2)µ̃2(·, x2)µ̃1(·, x2 − 1)
,

LRC3,2 =
λµ2µ1

λ̃(·, x2 − 1)µ̃2(·, x2 − 1)µ̃1(·, x2 − 2)
,

LRC′3,1
=

µ1µ2λ

µ̃1(·, x2)µ̃2(·, x2 + 1)λ̃(·, x2)
,

and
LRC′3,2

=
µ1µ2λ

µ̃1(·, x2 + 1)µ̃2(·, x2 + 2)λ̃(·, x2 + 1)
.

Now one can see that

LRC6 = LRC3,1 · LRC3,2 ·
λ̃(·, x2 − 1)

λ̃(·, x2)
,

and

LRC′6 = LRC′3,1
· LRC′3,2

· λ̃(·, x2 + 1)
λ̃(·, x2)

.

For the SDH change of measure, λ̃(·, x2) = µ1 + (µ2 − µ1) · x2/b. Hence,

λ̃(·, x2 − 1)
λ̃(·, x2)

> 1,

λ̃(·, x2 + 1)
λ̃(·, x2)

< 1,
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and
LRC6 > LRC3,1 · LRC3,2

LRC′6 < LRC′3,1
· LRC′3,2

For SDHI change of measure λ̃(·, ·) = µ2. Hence,

λ̃(·, x2 − 1)
λ̃(·, x2)

= 1,

and
LRC6 = LRC3,1 · LRC3,2

LRC′6 = LRC′3,1
· LRC′3,2

Thus, we have proved that Observation 4 is true for all cycles of length six. Now, let
us do the induction step.

The induction step

Let us consider a cycle of length 3 · (k +1) and suppose that Observation 4 is true for
all cycles of length 3 · k. Cycle length 3 · k means that there are exactly k arrivals,
k departures from node 1, and k departures from node 2.

Suppose, that the following lemma is true (we use it now and prove it at the end
of this appendix).

Lemma 1. For every cycle C there exists a state (j1, j2) such that

1) transition (j1, j2) → (j1 + 1, j2) ∈ C, and one of the following two statements is
true

(a) ∀ x1, x2: (x1, x2) ∈ C, x2 ≤ j2, or

(b) ∀ x1, x2: (x1, x2) ∈ C, x2 ≥ j2;

2) state (j1, j2) has such a property that
its predecessor state is equal to (j1 + 1, j2 − 1) if statement (a) is true, or,
its predecessor state is equal to (j1, j2 + 1) if statement (b) is true.

Informally, the above lemma means the following. If we locate all states of a cycle C
at a coordinate plane with a horizontal coordinate x1 and a vertical coordinate x2,
then there exists a state (j1, j2) ∈ C with the outgoing transition being an arrival,
such that all other states of the cycle C lie on one direction from it with respect
to the horizontal line going through this state. This means that either all states of
the cycle C are above the line (Figure B.5a), or, all states of the cycle C are below
the line (Figure B.5b), and the predecessor state to state (j1, j2) is as depicted on
Figures B.5a–b.
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(a)

(b)

Figure B.5: “Border” state

Proof of induction step

Let i be the number of consecutive arrivals starting from state (j1, j2), i.e., for all
j = j1, . . . , j1 + i − 1 there is an arrival at state (j, j2) and at the state (j1 + i, j2),
there is either departure from node 1 (Figure B.6), or from node 2 (Figure B.7).

Then, the last step of the induction is straightforward. Suppose, that at state
(j1 + i, j2) the departure is from node 1 (Figure B.6). Then, the cycle enters the
state (j1, j2) by departure from state (j1, j2 + 1) by Lemma 1. Now, if we move all
arrival transitions at states (j, j2) for j = j1, . . . , j1 + i − 1 up, i.e., replace all the
transitions (j, j2) → (j +1, j2) by (j, j2 +1) → (j +1, j2 +1), for j = j1, . . . , j1 + i−1,
as shown on Figure B.6 (in red), the cycle of length 3 · (k + 1) becomes a cycle of
length 3 · (k + 1)− 3 = 3 · k, for which, by induction, we suppose that Observation 4
is true. Thus, the likelihood ratio is multiplied by the ratio λ̃(j, j2 + 1)/λ̃(j, j2),
j = j1, . . . , j1 + i− 1, which is smaller than one for the SDH and equal to one for the
SDHI change of measure. Three rates that are left from the original cycle, namely,
λ̃(j1 + i − 1, j2), µ̃1(j1 + i, j2) and µ̃2(j1, j2 − 1) can form a cycle of length 3 if we
replace µ̃2(j1, j2−1) by µ̃2(j1 + i−1, j2−1) which does not affect the likelihood ratio.
On Figure B.6 the transitions that are replaced are shown by dashed lines and the
transitions by which they are replaced are shown in red.

Remark 1. Note, that outgoing transitions from states (j, j2 +1) for j = j1, . . . , j1 +
i− 1 can not be arrivals, since the predecessor state of a state (j, j2 + 1) can only be
the state (j, j2 + 2) (i.e., (j, j2 + 1) is entered by a departure from node 2), and the
successor state of a state (j, j2 +1) can only be the state (j−1, j2 +2) (i.e., (j, j2 +1)
is left by a departure from node 1), otherwise, our cycle would have a smaller sub-
cycle (which contradicts with the definition of a cycle). Note also, that if there are
states (j, j2 + 1) ∈ C for j = j1, . . . , j1 + i − 1 (where a departure from node 2 is
followed by a departure from node 1), then, replacing transitions (j, j2) → (j + 1, j2)
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Figure B.6: Consecutive arrivals. Cycle lies above

by (j, j2 +1) → (j +1, j2 +1) will make several smaller than 3 ·k sub-cycles (for which
Observation 4 is also true by induction).

Now, suppose, that at the state (j1 + i, j2) the departure is from node 2 (Fig-
ure B.7). Then, by Lemma 1, the cycle enters the state (j1, j2) by departure from
state (j1 + 1, j2 − 1). Similarly, by moving all arrival transitions at states (j, j2) for
j = j1 +1, . . . , j1 + i−1 down, i.e., replacing all the transitions (j, j2) → (j +1, j2) by
(j, j2 − 1) → (j + 1, j2 − 1) for j = j1 + 1, . . . , j1 + i− 1 our cycle 3 · (k + 1) becomes
a cycle of length 3 · (k + 1)− 3 = 3 · k and the likelihood ratio is multiplied by ratio
λ̃(j, j2 − 1)/λ̃(j, j2), j = j1 + 1, . . . , j1 + i − 1, which is larger than one for the SDH
and equal to one for the SDHI change of measure. Rates λ̃(j1, j2), µ̃1(j1 + 1, j2 − 1)
and µ̃2(j1 + i, j2) can form a cycle of length 3 if we replace µ̃2(j1 + i, j2) by µ̃2(j1, j2)
which does not affect the likelihood ratio. On Figure B.7 the transitions that are
replaced are shown by dashed lines and the transitions by which they are replaced
are shown in red.

Remark 1 is also valid in another direction, i.e., for states (j, j2 − 1), j =
j1 + 1, . . . , j1 + i− 1 (which can be entered only by a departure form node 1 and left
by a departure from node 2).

This finishes the induction step and, hence, proves Observation 4. Now we have
to prove Lemma 1 that we have already used. We do that below using a proof by
contradiction.
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Figure B.7: Consecutive arrivals. Cycle lies below

Figure B.8: Behavior of a cycle if Lemma 1 is violated
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Proof of Lemma 1

Suppose that the first statement of the lemma is not true. Then, let (J1, J2) and
(j1, j2) denote, respectively, the state of the cycle with the highest and the lowest x2

value, and such that the outgoing transition from this state is an arrival. Thus, all
states from the cycle with value x2 higher than J2 have no outgoing arrival transitions.
Similar is true for the state (j1, j2), i.e., all states from the cycle with value x2 smaller
than j2 have no outgoing arrival transitions.

Let A and B be the horizontal lines going through states (J1, J2) and (j1, j2),
respectively (Figure B.8). If part 1) of Lemma 1 is not true, then there are states
from the cycle that lie above the line A and states (from the cycle) that lie below
the line B. By the definition of the state (J1, J2), the outgoing transitions for all
states that lie above the line A are departures. The same is true for all states below
the line B.

Let us consider the line A. Every departure from node 1 decreases J1 by 1 and
increases J2 by 1, i.e., the cycle goes up and to the left. However, since J1 is finite,
at some point in time the departures from node 2 will happen. Hence, the cycle
necessarily crosses the line A at some point (I1, J2) with I1 < J1, otherwise, there
would be a smaller sub-cycle above the line A (which contradicts with our definition
of a cycle). Similar is true for the line B. Every departure from node 2 decreases j2
by 1, thus, cycle goes down. Since j2 is finite, at some point the departure from
node 1 occurs. Hence, the cycle necessarily crosses the line B at some point (i1, j2)
with i1 < j1 (otherwise, there would be a smaller sub-cycle below the line B) as
depicted in Figure B.8.

Since all the transitions form the cycle, the following states need to be connected
by a path, the states (i1, j2) and (J1, J2), and the states (I1, J2) and (j1, j2). Hence,
since i1 < j1 and I1 < J1, these two paths necessarily cross each other. Thus, the
cycle has originally consisted of at least two smaller cycles, which contradicts with
the definition of a cycle. This proves statement 1) of Lemma 1.

Now, part 2) of Lemma 1 is a direct consequence of part 1). If the state (j1, j2) is
such that its outgoing transition is an arrival and it has the highest x2 value, then all
states of the cycle lie below it (i.e., statement (a) is true) and the only way the cycle
can enter it from below is by departure from state (j1+1, j2−1), thus, the predecessor
state is (j1 +1, j2−1). Similar is true in case when the state (j1, j2) has the lowest x2

value and the outgoing transition is an arrival (i.e., statement (b) is true). Then, all
states of the cycle lie above the state (j1, j2), and the only way the cycle can enter it
from above is by departure from state (j1, j2 +1), thus, the predecessor state is equal
to (j1, j2 + 1). This finishes the proof of Lemma 1.
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Ïðåæäå âñåãî ÿ õîòåëà áû ïîáëàãîäàðèòü Âèêòîðà Íèêîëó, ìîåãî ñàìîãî ïåðâîãî
íàó÷íîãî ðóêîâîäèòåëÿ, ñ êîòîðûì ÿ íà÷àëà ñâîé ïóòü â äåáðè ìîäåëèðîâàíèÿ
ðåäêèõ ñîáûòèé. ß î÷åíü áëàãîäàðíà åìó çà âñå òî âðåìÿ, ÷òî îí ïîñâÿòèë ìíå,
çà òå çíàíèÿ, êîòîðûå îí ìíå îòêðûë è êîòîðûå ïîìîãëè â íàïèñàíèè äàííîé
ðàáîòû. ß òàê æå î÷åíü áëàãîäàðíà åìó çà òî, ÷òî îí áûë íå ïðîñòî ìîèì ðóêî-
âîäèòåëåì, íî è õîðîøèì äðóãîì, çà ìîðàëüíóþ ïîääåðæêó â òðóäíûå ìèíóòû
ìîåé æèçíè.

Òàê ðàñïîðÿäèëàñü ñóäüáà, ÷òî çàêàí÷èâàòü íàïèñàíèå äèïëîìíîé ðàáîòû ìíå
ïðèøëîñü ïîä äðóãèì ðóêîâîäñòâîì. È õîòÿ âíà÷àëå ýòî áûëî íåìíîãî òðóäíî,
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íà Õàâåðêîðòà, êîòîðûå íàïðàâëÿëè ìåíÿ íà ïóòè íàïèñàíèÿ äèïëîìíîé ðàáîòû.
ß õî÷ó ñêàçàòü îãðîìíîå ñïàñèáî Ïèòåð-×åðêó çà î÷åíü âåðíûå çàìå÷àíèÿ è äå-
òàëüíûé ðàçáîð òåêñòà, çà òðåáîâàòåëüíûé ïîäõîä ê íàïèñàíèþ è çà âñå òî âðåìÿ,
êîòîðîå ìû ïðîâåëè â äèñêóññèÿõ. Îíè áûëè î÷åíü ïîëåçíû. ß î÷åíü áëàãîäàð-
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è çà âñå ïðèÿòíûå ìîìåíòû, êîòîðûå ìû ïðîâåëè âìåñòå. ß õî÷ó ïîáëàãîäàðèòü
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ìåíÿ è ïîìîãàëè ìíå â òðóäíûå ìèíóòû. È îñîáåííóþ áëàãîäàðíîñòü ÿ õî÷ó âûðà-
çèòü ìîåé ñåìüå, ìîèì ëþáèìûì ðîäèòåëÿì, êîòîðûå âîñïèòàëè ìåíÿ è ñäåëàëè
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